Advertisement

Applied Microbiology and Biotechnology

, Volume 82, Issue 4, pp 597–604 | Cite as

d-Galacturonic acid catabolism in microorganisms and its biotechnological relevance

  • Peter Richard
  • Satu Hilditch
Mini-Review

Abstract

d-Galacturonic acid is the main constituent of pectin, a naturally abundant compound. Pectin-rich residues accumulate when sugar is extracted from sugar beet or juices are produced from citrus fruits. It is a cheap raw material but currently mainly used as animal feed. Pectin has the potential to be an important raw material for biotechnological conversions to fuels or chemicals. In this paper, we review the microbial pathways for the catabolism of d-galacturonic acid that would be relevant for the microbial conversion to useful products.

Keywords

d-Galacturonic acid d-Galacturonate Pectin Galactaric acid Mucic acid Galacturonate catabolism 

Notes

Acknowledgements

This work was supported by an Academy Research Fellowship from the Academy of Finland for P. Richard. We thank Dr Marylin Wiebe and Dr. John Londesborough for critical reading of the manuscript and helpful suggestions.

References

  1. Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nat Biotechnol 21:177–181CrossRefGoogle Scholar
  2. Ashwell G, Wahba AJ, Hickman J (1960) Uronic acid metabolism in bacteria. I. Purification and properties of uronic acid isomerase in Escherichia coli. J Biol Chem 235:1559–1565Google Scholar
  3. Buchanan CL, Connaris H, Danson MJ, Reeve CD, Hough DW (1999) An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates. Biochem J 343:563–570CrossRefGoogle Scholar
  4. Chang YF, Feingold DS (1969) Hexuronic acid dehydrogenase of Agrobacterium tumefaciens. J Bacteriol 99:667–673Google Scholar
  5. Chang YF, Feingold DS (1970) d-Glucaric acid and galactaric acid catabolism by Agrobacterium tumefaciens. J Bacteriol 102:85–96Google Scholar
  6. Condemine G, Robert-Baudouy J (1987) 2-Keto-3-deoxygluconate transport system in Erwinia chrysanthemi. J Bacteriol 169:1972–1978Google Scholar
  7. Condemine G, Robert-Baudouy J (1991) Analysis of an Erwinia chrysanthemi gene cluster involved in pectin degradation. Mol Microbiol 5:2191–2202CrossRefGoogle Scholar
  8. Crowther RL, Georgiadis MM (2005) The crystal structure of 5-keto-4-deoxyuronate isomerase from Escherichia coli. Proteins 61:680–684CrossRefGoogle Scholar
  9. Cynkin MA, Ashwell G (1960) Uronic acid metabolism in bacteria. IV. Purification and properties of 2-keto-3-deoxy-d-gluconokinase in Escherichia coli. J Biol Chem 235:1576–1579Google Scholar
  10. de Vries RP, Jansen J, Aguilar G, Parenicova L, Joosten V, Wulfert F, Benen JA, Visser J (2002) Expression profiling of pectinolytic genes from Aspergillus niger. FEBS Lett 530:41–47CrossRefGoogle Scholar
  11. Doran JB, Cripe J, Sutton M, Foster B (2000) Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol. Appl Biochem Biotechnol 84–86:141–152CrossRefGoogle Scholar
  12. Doran-Peterson J, Cook DM, Brandon SK (2008) Microbial conversion of sugars from plant biomass to lactic acid or ethanol. Plant J 54:582–592CrossRefGoogle Scholar
  13. Ehrlich F (1932a) Über die Pektolase, ein neuaufgefundenes Pektinferment. II. Biochem Z 251:204–222Google Scholar
  14. Ehrlich F (1932b) Über die Pektolase, ein neuaugefundenes Pektinferment. I. Biochem Z 250:525–534Google Scholar
  15. Grohmann K, Manthey JA, Cameron RG, Busling BS (1998) Fermentation of galacturonic acid and pectin rich materials to ethanol by genetically modified strains of Erwinia. Biotechnol Lett 20:195–200CrossRefGoogle Scholar
  16. Hickman J, Ashwell G (1960) Uronic acid metabolism in bacteria. II. Purification and properties of d-altronic acid and d-mannonic acid dehydrogenases in Escherichia coli. J Biol Chem 235:1566–1570Google Scholar
  17. Hilditch S, Berghäll S, Kalkkinen N, Penttilä M, Richard P (2007) The missing link in the fungal d-galacturonate pathway: identification of the l-threo-3-deoxy-hexulosonate aldolase. J Biol Chem 282:26195–26201CrossRefGoogle Scholar
  18. Hoondal GS, Tiwari RP, Tewari R, Dahiya N, Beg QK (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59:409–418CrossRefGoogle Scholar
  19. Hubbard BK, Koch M, Palmer DR, Babbitt PC, Gerlt JA (1998) Evolution of enzymatic activities in the enolase superfamily: characterization of the (d)-glucarate/galactarate catabolic pathway in Escherichia coli. Biochemistry 37:14369–14375CrossRefGoogle Scholar
  20. Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425Google Scholar
  21. Jayani RS, Shivalika S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944CrossRefGoogle Scholar
  22. Jeffcoat R (1975) Studies on the subunit structure of 4-deoxy-5-oxoglucarate hydro-lyase (decarboxylating) from Pseudomonas acidovorans. Biochem J 145:305–309Google Scholar
  23. Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Bioresour Technol 77:215–227CrossRefGoogle Scholar
  24. Kessler G, Neufeld EF, Feingold DS, Hassid WZ (1961) Metabolism of d-glucuronic acid and d-galacturonic acid by Phaseolus aureus seedlings. J Biol Chem 236:308–312Google Scholar
  25. Kilgore WW, Starr MP (1959) Uronate oxidation by phytopathogenic pseudomonads. Nature 183:1412–1413CrossRefGoogle Scholar
  26. Kuorelahti S, Kalkkinen N, Penttilä M, Londesborough J, Richard P (2005) Identification in the mold Hypocrea jecorina of the first fungal d-galacturonic acid reductase. Biochemistry 44:11234–11240CrossRefGoogle Scholar
  27. Kuorelahti S, Jouhten P, Maaheimo H, Penttilä M, Richard P (2006a) l-Galactonate dehydratase is part of the fungal path for d-galacturonic acid catabolism. Mol Microbiol 61:1060–1068CrossRefGoogle Scholar
  28. Kuorelahti S, Penttilä M, Richard P (2006b) Microbial conversion of sugar acids and means useful therein. PCT application WO 2006/128965 A1Google Scholar
  29. Liepins J, Kuorelahti S, Penttilä M, Richard P (2006) Enzymes for the NADPH-dependent reduction of dihydroxyacetone and d-glyceraldehyde and l-glyceraldehyde in the mould Hypocrea jecorina. FEBS J 273:4229–4235CrossRefGoogle Scholar
  30. Link KP, Nedden R (1931) Improvements in the preparation of d-galacturonic acid. J Biol Chem 94:307–314Google Scholar
  31. Martens-Uzonova E (2008) Assessment of the pectinolytic network of Aspergillus niger by functional genomics. Insight from the transcriptome. PhD thesis, University of Wageningen, WageningenGoogle Scholar
  32. Mata-Gilsinger M, Ritzenthaler P (1983) Physical mapping of the exuT and uxaC operators by use of exu plasmids and generation of deletion mutants in vitro. J Bacteriol 155:973–982Google Scholar
  33. Meloche HP, Wood WA (1964) Crystallization and characteristics of 2-keto-3-deoxy-6-phosphogluconic aldolase. J Biol Chem 239:3515–3518Google Scholar
  34. Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57:2810–2815Google Scholar
  35. Pérez S, Mazeau K, Hervé du Penhoat C (2000) The three-dimensional structures of the pectic polysaccharides. Plant Physiol Biochem 38:37–55CrossRefGoogle Scholar
  36. Perez S, Rodriguez-Carvajal MA, Doco T (2003) A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie 85:109–121CrossRefGoogle Scholar
  37. Prasanna V, Prabha TN, Tharanathan RN (2007) Fruit ripening phenomena—an overview. Crit Rev Food Sci Nutr 47:1–19CrossRefGoogle Scholar
  38. Preiss J, Ashwell G (1963a) Polygalacturonic acid metabolism in bacteria. I. Enzymatic formation of 4-deoxy-l-threo-5-hexoseulose uronic acid. J Biol Chem 238:1571–1577Google Scholar
  39. Preiss J, Ashwell G (1963b) Polygalacturonic acid metabolism in bacteria. II. Formation and metabolism of 3-deoxy-d-glycero-2, 5-hexodiulosonic acid. J Biol Chem 238:1577–1583Google Scholar
  40. Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967CrossRefGoogle Scholar
  41. Riov J (1975) Metabolism of uronic acids in plant tissues: partial purification and properties of uronic acid oxidase from citrus leaves. Plant Physiol 55:602–606CrossRefGoogle Scholar
  42. Saito D, Nakaji S, Fukuda S, Shimoyama T, Sakamoto J, Sugawara K (2005) Comparison of the amount of pectin in the human terminal ileum with the amount of orally administered pectin. Nutrition. 21:914–919Google Scholar
  43. Sealy-Lewis HM, Fairhurst V (1992) An NADP+-dependent glycerol dehydrogenase in Aspergillus nidulans is inducible by d-galacturonate. Curr Genet 22:293–296CrossRefGoogle Scholar
  44. Smiley JD, Ashwell G (1960) Uronic acid metabolism in bacteria. III. Purification and properties of d-altronic acid and d-mannonic acid dehydrases in Escherichia coli. J Biol Chem 235:1571–1575Google Scholar
  45. Wagner G, Hollmann S (1976) Uronic acid dehydrogenase from Pseudomonas syringae. Purification and properties. Eur J Biochem 61:589–596CrossRefGoogle Scholar
  46. van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90:391–418CrossRefGoogle Scholar
  47. Wolterink-van Loo S, van Eerde A, Siemerink MA, Akerboom J, Dijkstra BW, van der Oost J (2007) Biochemical and structural exploration of the catalytic capacity of Sulfolobus KDG aldolases. Biochem J 403:421–430CrossRefGoogle Scholar
  48. Würdig G (1977) Apparition de l’acide mucique dans le mout provenant de raisins attaques par le Botrytis. Bull. OIV 50:50–56Google Scholar
  49. Zajic JE (1959) Hexuronic dehydrogenase of Agrobacterium tumefaciens. J Bacteriol 78:734–735Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.VTT Technical Research Centre of FinlandEspooFinland

Personalised recommendations