Applied Microbiology and Biotechnology

, Volume 83, Issue 1, pp 43–57

Expression of BHRF1 improves survival of murine hybridoma cultures in batch and continuous modes

  • Sandra Juanola
  • Joaquim Vives
  • Ernest Milián
  • Eva Prats
  • Jordi J. Cairó
  • Francesc Gòdia
Biotechnological Products and Process Engineering

Abstract

Cell death by apoptosis limits growth and productivity in most animal cell cultures. It is therefore desirable to define genetic interventions to generate robust cell lines with superior performance in bioreactors, either by increasing specific productivity, life-span of the cultures or both. In this context, forced expression of BHRF1, an Epstein–Barr virus-encoded early protein with structural and functional homology with the anti-apoptotic protein Bcl-2, effectively protected hybridomas in culture and delayed cell death under conditions of glutamine starvation. In the present study, we explored the potential application of BHRF1 expression in hybridomas for long-term apoptosis protection under different biotechnological process designs (batch and continuous) and compared it to strategies based on Bcl-2 overexpression. Our results confirmed that long-term maintenance of the anti-apoptotic effect of BHRF1 can be obtained using bicistronic configurations conferring enhanced protection compared to Bcl-2, even in the absence of selective pressure. Such protective effect of BHRF1 is demonstrated both in batch and continuous culture. Moreover, a further analysis at high cell densities in semi-continuous perfusion cultures indicated that the mechanism of action of BHRF1 involves cell cycle arrest in G0–G1 state and this is translated in lower numbers of dead cells.

Keywords

BHRF1 Hybridoma cells Apoptosis protection 

References

  1. Albrecht JC, Nicholas J, Biller D, Cameron KR, Biesinger B, Newman C, Wittmann S, Craxton MA, Coleman H, Fleckenstein B, Honess RW (1992) Primary structure of the herpesvirus saimiri genome. J Virol 66:5047–5058Google Scholar
  2. al-Rubeai M, Singh RP (1998) Apoptosis in cell culture. Curr Opin Biotechnol 9:152–156CrossRefGoogle Scholar
  3. Altamirano C, Cairo JJ, Godia F (2001) Decoupling cell growth and product formation in Chinese hamster ovary cells through metabolic control. Biotechnol Bioeng 76:351–360CrossRefGoogle Scholar
  4. Antonsson B (2004) Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Mol Cell Biochem 256–257:141–155CrossRefGoogle Scholar
  5. Arden N, Betenbaugh MJ (2004) Life and death in mammalian cell culture: strategies for apoptosis inhibition. Trends Biotechnol 22:174–180CrossRefGoogle Scholar
  6. Arvanitakis L, Yaseen N, Sharma S (1995) Latent membrane protein-1 induces cyclin D2 expression, pRb hyperphosphorylation, and loss of TGF-beta 1-mediated growth inhibition in EBV-positive B cells. J Immunol 155:1047–1056Google Scholar
  7. Basanez G, Zhang J, Chau BN, Maksaev GI, Frolov VA, Brandt TA, Burch J, Hardwick JM, Zimmerberg J (2001) Pro-apoptotic cleavage products of Bcl-xL form cytochrome c-conducting pores in pure lipid membranes. J Biol Chem 276:31083–31091CrossRefGoogle Scholar
  8. Barnes LM, Bentley CM, Dickson AJ (2003) Stability of protein production from recombinant mammalian cells. Biotechnol Bioeng 81:631–639CrossRefGoogle Scholar
  9. Bellows DS, Chau BN, Lee P, Lazebnik Y, Burns WH, Hardwick JM (2000) Antiapoptotic herpesvirus Bcl-2 homologs escape caspase-mediated conversion to proapoptotic proteins. J Virol 74:5024–5031CrossRefGoogle Scholar
  10. Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291CrossRefGoogle Scholar
  11. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278:1966–1968CrossRefGoogle Scholar
  12. Clem RJ, Cheng EH, Karp CL, Kirsch DG, Ueno K, Takahashi A, Kastan MB, Griffin DE, Earnshaw WC, Veliuona MA, Hardwick JM (1998) Modulation of cell death by Bcl-XL through caspase interaction. Proc Natl Acad Sci U S A 95:554–559CrossRefGoogle Scholar
  13. Dickson AJ (1998) Apoptosis regulation and its applications to biotechnology. Trends Biotechnol 16:339–342CrossRefGoogle Scholar
  14. Dong H, Tang YJ, Ohashi R, Hamel JF (2005) A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells. Biotechnol Prog 21:140–147CrossRefGoogle Scholar
  15. Figueroa B Jr, Chen S, Oyler GA, Hardwick JM, Betenbaugh MJ (2004) Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions. Biotechnol Bioeng 85:589–600CrossRefGoogle Scholar
  16. Figueroa B Jr, Ailor E, Osborne D, Hardwick JM, Reff M, Betenbaugh MJ (2007) Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Biotechnol Bioeng 97:877–892CrossRefGoogle Scholar
  17. Foghsgaard L, Jaattela M (1997) The ability of BHRF1 to inhibit apoptosis is dependent on stimulus and cell type. J Virol 71:7509–7517Google Scholar
  18. Gangappa S, van Dyk LF, Jewett TJ, Speck SH, Virgin HW (2002) Identification of the in vivo role of a viral bcl-2. J Exp Med 195:931–940CrossRefGoogle Scholar
  19. Henderson S, Huen D, Rowe M, Dawson C, Johnson G, Rickinson A (1993) Epstein–Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci U S A 90:8479–8483CrossRefGoogle Scholar
  20. Huang Q, Petros AM, Virgin HW, Fesik SW, Olejniczak ET (2003) Solution structure of the BHRF1 protein from Epstein–Barr virus, a homolog of human Bcl-2. J Mol Biol 332:1123–1130CrossRefGoogle Scholar
  21. Izumi M, Gilbert DM (1999) Homogeneous tetracycline-regulatable gene expression in mammalian fibroblasts. J Cell Biochem 76:280–289CrossRefGoogle Scholar
  22. Jaattela M (1999) Escaping cell death: survival proteins in cancer. Exp Cell Res 248:30–43CrossRefGoogle Scholar
  23. Jonas EA, Hickman JA, Chachar M, Polster BM, Brandt TA, Fannjiang Y, Ivanovska I, Basanez G, Kinnally KW, Zimmerberg J, Hardwick JM, Kaczmarek LK (2004) Proapoptotic N-truncated BCL-xL protein activates endogenous mitochondrial channels in living synaptic terminals. Proc Natl Acad Sci U S A 101:13590–13595CrossRefGoogle Scholar
  24. Jung JU, Stager M, Desrosiers RC (1994) Virus-encoded cyclin. Mol Cell Biol 14:7235–7244Google Scholar
  25. Kawanishi M (1997) Epstein–Barr virus BHRF1 protein protects intestine 407 epithelial cells from apoptosis induced by tumor necrosis factor alpha and anti-Fas antibody. J Virol 71:3319–3322Google Scholar
  26. Kawanishi M, Tada-Oikawa S, Kawanishi S (2002) Epstein–Barr virus BHRF1 functions downstream of Bid cleavage and upstream of mitochondrial dysfunction to inhibit TRAIL-induced apoptosis in BJAB cells. Biochem Biophys Res Commun 297:682–687CrossRefGoogle Scholar
  27. Kirsch DG, Doseff A, Chau BN, Lim DS, de Souza-Pinto NC, Hansford R, Kastan MB, Lazebnik YA, Hardwick JM (1999) Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J Biol Chem 274:21155–21161CrossRefGoogle Scholar
  28. Korke R, Gatti Mde L, Lau AL, Lim JW, Seow TK, Chung MC, Hu WS (2004) Large scale gene expression profiling of metabolic shift of mammalian cells in culture. J Biotechnol 107:1–17CrossRefGoogle Scholar
  29. Kozak M (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12:857–872CrossRefGoogle Scholar
  30. Lee JH, Welsh MJ (1999) Enhancement of calcium phosphate-mediated transfection by inclusion of adenovirus in coprecipitates. Gene Ther 6:676–682CrossRefGoogle Scholar
  31. Li LY, Liu MY, Shih HM, Tsai CH, Chen JY (2006) Human cellular protein VRK2 interacts specifically with Epstein–Barr virus BHRF1, a homologue of Bcl-2, and enhances cell survival. J Gen Virol 87:2869–2878CrossRefGoogle Scholar
  32. Li LY, Shih HM, Liu MY, Chen JY (2001) The cellular protein PRA1 modulates the anti-apoptotic activity of Epstein–Barr virus BHRF1, a homologue of Bcl-2, through direct interaction. J Biol Chem 276:27354–27362CrossRefGoogle Scholar
  33. Liston P, Fong WG, Korneluk RG (2003) The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 22:8568–8580CrossRefGoogle Scholar
  34. McCarthy NJ, Hazlewood SA, Huen DS, Rickinson AB, Williams GT (1996) The Epstein–Barr virus gene BHRF1, a homologue of the cellular oncogene Bcl-2, inhibits apoptosis induced by gamma radiation and chemotherapeutic drugs. Adv Exp Med Biol 406:83–97Google Scholar
  35. Mohan SB, Lyddiatt A (1991) Passive release of monoclonal antibodies from hybridoma cells. Cytotechnology 5:201–209CrossRefGoogle Scholar
  36. Nicholas J, Cameron KR, Honess RW (1992) Herpesvirus saimiri encodes homologues of G protein-coupled receptors and cyclins. Nature 355:362–365CrossRefGoogle Scholar
  37. Qu Z, Thottassery JV, Van Ginkel S, Manuvakhova M, Westbrook L, Roland-Lazenby C, Hays S, Kern FG (2004) Homogeneity and long-term stability of tetracycline-regulated gene expression with low basal activity by using the rtTA2S-M2 transactivator and insulator-flanked reporter vectors. Gene 327:61–73CrossRefGoogle Scholar
  38. Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D, Parry JP, Peruzzi D, Edelman IS, Chang Y, Moore PS (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 93:14862–14867CrossRefGoogle Scholar
  39. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3:401–410CrossRefGoogle Scholar
  40. Sauerwald TM, Oyler GA, Betenbaugh MJ (2003) Study of caspase inhibitors for limiting death in mammalian cell culture. Biotechnol Bioeng 81:329–340CrossRefGoogle Scholar
  41. Sauerwald TM, Figueroa B Jr, Hardwick JM, Oyler GA, Betenbaugh MJ (2006) Combining caspase and mitochondrial dysfunction inhibitors of apoptosis to limit cell death in mammalian cell cultures. Biotechnol Bioeng 94:362–372CrossRefGoogle Scholar
  42. Seow TK, Korke R, Liang RC, Ong SE, Ou K, Wong K, Hu WS, Chung MC (2001) Proteomic investigation of metabolic shift in mammalian cell culture. Biotechnol Prog 17:1137–1144CrossRefGoogle Scholar
  43. Slee EA, Adrain C, Martin SJ (1999) Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6:1067–1074CrossRefGoogle Scholar
  44. Spierings D, McStay G, Saleh M, Bender C, Chipuk J, Maurer U, Green DR (2005) Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science 310:66–67CrossRefGoogle Scholar
  45. Stennicke HR, Ryan CA, Salvesen GS (2002) Reprieval from execution: the molecular basis of caspase inhibition. Trends Biochem Sci 27:94–101CrossRefGoogle Scholar
  46. Tarodi B, Subramanian T, Chinnadurai G (1994) Epstein–Barr virus BHRF1 protein protects against cell death induced by DNA-damaging agents and heterologous viral infection. Virology 201:404–407CrossRefGoogle Scholar
  47. Tinto A, Gabernet C, Vives J, Prats E, Cairo JJ, Cornudella L, Godia F (2002) The protection of hybridoma cells from apoptosis by caspase inhibition allows culture recovery when exposed to non-inducing conditions. J Biotechnol 95:205–214CrossRefGoogle Scholar
  48. van Dyk LF, Virgin HW, Speck SH (2000) The murine gammaherpesvirus 68 v-cyclin is a critical regulator of reactivation from latency. J Virol 74:7451–7461CrossRefGoogle Scholar
  49. Vives J, Juanola S, Cairo JJ, Godia F (2003a) Metabolic engineering of apoptosis in cultured animal cells: implications for the biotechnology industry. Metab Eng 5:124–132CrossRefGoogle Scholar
  50. Vives J, Juanola S, Cairo JJ, Prats E, Cornudella L, Godia F (2003b) Protective effect of viral homologues of bcl-2 on hybridoma cells under apoptosis-inducing conditions. Biotechnol Prog 19:84–89CrossRefGoogle Scholar
  51. Wong DC, Wong KT, Lee YY, Morin PN, Heng CK, Yap MG (2006) Transcriptional profiling of apoptotic pathways in batch and fed-batch CHO cell cultures. Biotechnol Bioeng 94:373–382CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sandra Juanola
    • 1
  • Joaquim Vives
    • 1
  • Ernest Milián
    • 1
  • Eva Prats
    • 2
  • Jordi J. Cairó
    • 1
  • Francesc Gòdia
    • 1
  1. 1.Departament d’Enginyeria Química, Escola Tècnica Superior d’Enginyeria (ETSE)Universitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Departament de Biologia Molecular i CellularIBMB-CSICJordi Girona 18-26BarcelonaSpain

Personalised recommendations