Advertisement

Applied Microbiology and Biotechnology

, Volume 82, Issue 1, pp 179–185 | Cite as

Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs

  • I. Douskova
  • J. Doucha
  • K. Livansky
  • J. Machat
  • P. Novak
  • D. Umysova
  • V. Zachleder
  • M. Vitova
Environmental Biotechnology

Abstract

A flue gas originating from a municipal waste incinerator was used as a source of CO2 for the cultivation of the microalga Chlorella vulgaris, in order to decrease the biomass production costs and to bioremediate CO2 simultaneously. The utilization of the flue gas containing 10–13% (v/v) CO2 and 8–10% (v/v) O2 for the photobioreactor agitation and CO2 supply was proven to be convenient. The growth rate of algal cultures on the flue gas was even higher when compared with the control culture supplied by a mixture of pure CO2 and air (11% (v/v) CO2). Correspondingly, the CO2 fixation rate was also higher when using the flue gas (4.4 g CO2 l−1 24 h−1) than using the control gas (3.0 g CO2 l−1 24 h−1). The toxicological analysis of the biomass produced using untreated flue gas showed only a slight excess of mercury while all the other compounds (other heavy metals, polycyclic aromatic hydrocarbons, polychlorinated dibenzodioxins and dibenzofurans, and polychlorinated biphenyls) were below the limits required by the European Union foodstuff legislation. Fortunately, extending the flue gas treatment prior to the cultivation unit by a simple granulated activated carbon column led to an efficient absorption of gaseous mercury and to the algal biomass composition compliant with all the foodstuff legislation requirements.

Keywords

Algae Chlorella Carbon dioxide Bioremediation Flue gas Food and Feed supply 

Notes

Acknowledgments

This work was supported by the project EUREKA of the Ministry of Education, Youth and Sports of the Czech Republic (No. OE221) and by the Institutional Research Concept No. AV0Z5020510. The authors gratefully acknowledge Ing. Frantisek Straka, PhD (Fuel Research Institute, Bechovice, Czech Republic) for providing the pure gas mixtures.

References

  1. Benemann JR (1993) Utilization of carbon dioxide from fossil fuel-burning power plants with biological systems. Energy Convers Mgmt 34:999–1004CrossRefGoogle Scholar
  2. Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Mgmt 38:S475–S479CrossRefGoogle Scholar
  3. Brown LM (1996) Uptake of carbon dioxide from flue gas by microalgae. Energy Convers Mgmt 37:1363–1367CrossRefGoogle Scholar
  4. Brown LM, Zeiler KG (1993) Aquatic biomass and carbon dioxide trapping. Energy Convers Mgmt 34:1005–1013CrossRefGoogle Scholar
  5. Chae SR, Hwang EJ, Shin HS (2006) Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresource Technol 97:322–329CrossRefGoogle Scholar
  6. Del Campo JA, Garcia-Gonzalez M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174CrossRefGoogle Scholar
  7. Doucha J (1979) Continuous cultures of algae. In: Marvan P, Přibil S, Lhotský O (eds) Algal assays and monitoring eutrophication, 1st edn. Schweizerbart’sche Verlagbuchhandlung, Stuttgart, pp 181–191Google Scholar
  8. Doucha J, Livansky K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826CrossRefGoogle Scholar
  9. Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412CrossRefGoogle Scholar
  10. Douskova I, Doucha J, Machat J, Novak P, Umysova D, Vitova M, Zachleder V (2008) Microalgae as a means for converting flue gas CO2 into biomass with high content of starch. Proceedings of the International Conference: Bioenergy: Challenges and Opportunities, 6th/9th April 2008, Guimaraes, PortugalGoogle Scholar
  11. EC (4 December 2000) Directive No 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration of wasteGoogle Scholar
  12. EC (19 December 2006) Commission Regulation No 1881/2006 setting maximum levels for certain contaminants in foodstuffsGoogle Scholar
  13. EN 1948:1996 (1996) Stationary source emissions—determination of mass concentration of PCDDs/PCDFs and dioxin-like PCBsGoogle Scholar
  14. Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signalling. New Phytol 146:359–388CrossRefGoogle Scholar
  15. Galloway RA, Gauch HG, Soeder CJ (1964) Effects of inhibitory levels of CO2 on Chlorella. Plant Physiol 39:R8Google Scholar
  16. Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662CrossRefGoogle Scholar
  17. Kadam KL (1997) Plant flue gas as a source of CO2 for microalgae cultivation. Economic impact of different process options. Energy Convers Mgmt 38:S505–S510CrossRefGoogle Scholar
  18. Kadam KL (2002) Environmental implications of power generation via coal-microalgae cofiring. Energy 27:905–922CrossRefGoogle Scholar
  19. Kurano N, Ikemoto H, Miyashita H, Hasegawa T, Hata H, Miyachi S (1995) Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energy Convers Mgmt 36:689–692CrossRefGoogle Scholar
  20. Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers Mgmt 36:717–720CrossRefGoogle Scholar
  21. Matsumoto H, Hamasaki A, Sioji N, Ikuta Y (1997) Influence of CO2, SO2 and NO in flue gas on microalgae productivity. J Chem Eng Japan 30:620–624CrossRefGoogle Scholar
  22. Murakami M, Ikenouchi M (1997) The biological CO2 fixation and utilization project by RITE. 2. Screening and breeding of microalgae with high capability in fixing CO2. Energy Convers Mgmt 38:S493–S497CrossRefGoogle Scholar
  23. Negoro M, Hamasaki A, Ikuta Y, Makita T, Hirayama K, Suzuki S (1993) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 39:643–653CrossRefGoogle Scholar
  24. Radwan SS (1991) Sources of C-20-polyunsaturated fatty acids for biotechnological use. Appl Microbiol Biotechnol 35:421–430CrossRefGoogle Scholar
  25. Sasaki K, Watanabe M, Tanaka T (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 58:23–29CrossRefGoogle Scholar
  26. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosc Bioeng 101:87–96CrossRefGoogle Scholar
  27. Vyhlaska 305/2004 Sb.—Decree of the Government of the Czech Republic No. 305/2004 Code establishing types of contaminants and their maximum levels in foodstuffs (in Czech)Google Scholar
  28. Yoshihara KI, Nagase H, Eguchi K, Hirata K, Miyamoto K (1996) Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor. J Ferm Bioeng 82:351–354CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • I. Douskova
    • 1
  • J. Doucha
    • 1
  • K. Livansky
    • 1
  • J. Machat
    • 2
  • P. Novak
    • 3
  • D. Umysova
    • 1
  • V. Zachleder
    • 1
  • M. Vitova
    • 1
  1. 1.Laboratory of Cell Cycles of Algae, Department of Autotrophic Microorganisms, Institute of MicrobiologyAcademy of Sciences of the Czech RepublicTrebonCzech Republic
  2. 2.Research Centre for Environmental Chemistry and EcotoxicologyMasaryk UniversityBrnoCzech Republic
  3. 3.Termizo Inc.LiberecCzech Republic

Personalised recommendations