Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons

  • 696 Accesses

  • 84 Citations


Rhodococcus erythropolis was found to utilize C5 to C16 n-alkane hydrocarbons as sole source of carbon and energy when growing as planktonic or biofilm cells attached to polystyrene surfaces. Growth rates on even numbered were two- to threefold increased relatively to odd-numbered n-alkanes and depended on the chain length of the n-alkanes. C10-, C12-, C14-, and C16-n-alkanes gave rise to two- to fourfold increased maximal growth rates relative to C5- to C9-hydrocarbons. In reaction to the extremely poor water solubility of the n-alkanes, both planktonic and biofilm cells exhibited distinct adaptive changes. These included the production of surface active compounds and substrate-specific modifications of the physicochemical cell surface properties as expressed by the microbial adhesion to hydrocarbon- and contact angle-based hydrophobicity, as well as the zeta potential of the cells. By contrast, n-alkane-specific alterations of the cellular membrane composition were less distinct. The specificity of the observed autecological changes suggest that R. erythropolis cells may be used in the development and application of sound biocatalytic processes using n-alkanes as substrates or substrate reservoirs or for target-specific bioremediation of oils and combustibles, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Adamson AW (1976) Physical chemistry of surfaces. Wiley, New York

  2. Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386

  3. Alvarez HM (2003) Relationship between beta-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeterior Biodegrad 52:35–42

  4. An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348

  5. Bendinger B, Rijnaarts HHM, Altendorf K, Zehnder AJB (1993) Physicochemical cell-surface and adhesive properties of Coryneform bacteria related to the presence and chain-length of mycolic acids. Appl Environ Microbiol 59:3973–3977

  6. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

  7. Borrego S, Nubio E, Ancheta O, Espinosa ME (2000) Study of the microbial aggregation in mycobacterium using image analysis and electron microscopy. Tissue Cell 32:494–500

  8. Chen Q, Janssen DB, Witholt B (1995) Growth on octane alters the membrane lipid fatty-acids of Pseudomonas oleovorans due to the induction of Alkb and synthesis of octanol. J Bacteriol 177:6894–6901

  9. Daugulis AJ (2001) Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol 19:457–462

  10. de Carvalho CCCR, da Fonseca MMR (2002a) Maintenance of cell viability in the biotransformation of (-)-carveol with whole cells of Rhodococcus erythropolis. J Mol Catal B Enzym 19:389–398

  11. de Carvalho CCCR, da Fonseca MMR (2002b) Influence of reactor configuration on the production of carvone from carveol by whole cells of Rhodococcus erythropolis DCL14. J Mol Catal B Enzym 19:377–387

  12. de Carvalho CCCR, da Fonseca MMR (2004) Principal component analysis applied to bacterial cell behaviour in the presence of organic solvents. Biocatal Biotransform 22:203–214

  13. Carvalho CCCR, da Fonseca MMR (2005a) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67:715–726

  14. de Carvalho CCCR, da Fonseca MMR (2005b) Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL 14. FEMS Microbiol Ecol 51:389–399

  15. de Carvalho CCCR, da Fonseca MMR (2007a) Preventing biofilm formation: promoting cell separation with terpenes. FEMS Microbiol Ecol 61:406–413

  16. de Carvalho CCCR, da Fonseca MMR (2007b) Assessment of three-dimensional biofilm structure using an optical microscope. BioTechniques 42:616–620

  17. de Carvalho CCCR, van Keulen F, da Fonseca MMR (2000) Production and recovery of limonene-1,2-diol and simultaneous resolution of a diastereomeric mixture of limonene-1,2-epoxide with whole cells of Rhodococcus erythropolis DCL14. Biocatal Biotransform 18:223–235

  18. de Carvalho CCCR, Pons MN, da Fonseca MMR (2003) Principal components analysis as a tool to summarise biotransformation data: influence on cells of solvent type and phase ratio. Biocatal Biotransform 21:305–314

  19. de Carvalho CCCR, Parreno-Marchante B, Neumann G, da Fonseca MMR, Heipieper HJ (2005a) Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl Microbiol Biotechnol 67:383–388

  20. de Carvalho CCCR, Poretti A, da Fonseca MMR (2005b) Cell adaptation to solvent, substrate and product: a successful strategy to overcome product inhibition in a bioconversion system. Appl Microbiol Biotechnol 69:268–275

  21. de Carvalho CCCR, Fatal V, Alves SS, da Fonseca MMR (2007a) Adaptation of Rhodococcus erythropolis cells to high concentrations of toluene. Appl Microbiol Biotechnol 76:1423–1430

  22. de Carvalho CCCR, Marques MPC, Fernandes P, da Fonseca MMR (2007b) Degradation of hydrocarbons and alcohols by Rhodococcus erythropolis DCL14: a comparison in scale performance. Biocatal Biotransform 25:144–150

  23. Geertsema-Doornbusch GI, van der Mei HC, Busscher HJ (1993) Microbial cell surface hydrophobicity: the involvement of electrostatic interactions in microbial adhesion to hydrocarbons (MATH). J Microbiol Methods 18:61–68

  24. Hiementz PC (1986) Principles of colloid and surface chemistry. Dekker, New York

  25. Heipieper HJ, de Bont JAM (1994) Adaptation of Pseudomonas putida S 12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl. Environ. Microbiol. 60:4440–4444

  26. Heipieper HJ, Keweloh H, Rehm HJ (1991) Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Environ Microbiol 57:1213–1217

  27. Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms behind resistance of whole cells to toxic organic solvents. Trends Biotechnol (TIBTECH) 12:409–415

  28. Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973

  29. Jucker BA, Harms H, Zehnder AJB (1996) Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and teflon. J Bacteriol 178:5472–5479

  30. Kretschmer A, Bock H, Wagner F (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on normal-alkanes. Appl Environ Microbiol 44:864–870

  31. Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie Van Leeuwenhoek 74:59–70

  32. Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus—masters of catabolic versatility. Curr Opin Biotechnol 16:282–290

  33. Liu Y, Yang SF, Li Y, Xu H, Qin L, Tay J-H (2004) The influence of cell and substratum surface hydrophobicities on microbial attachment. J Biotechnol 110:251–256

  34. Ljungh A, Wadstrom T (1995) Growth-conditions influencing expression of cell-surface hydrophobicity of staphylococci and other wound infection pathogens. Microbiol Immunol 39:753–757

  35. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:107–118

  36. Mozes N, Marchal F, Hermesse MP, Van Haecht JL, Reuliaux L, Leonard AJ, Rouxhet PG (1987) Immobilization of microorganisms by adhesion: interplay of electrostatic and nonelectrostatic interactions. Biotechnol Bioeng 30:439–450

  37. Neumann G, Kabelitz N, Zehnsdorf A, Miltner A, Lippold H, Meyer D, Schmid A, Heipieper HJ (2005) Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations. Appl Environ Microbiol 71:6606–6612

  38. Rijnaarts HHM, Norde W, Lyklema J, Zehnder AJB (1995) The isoelectric point of bacteria as indicator for the presence of cell surface polymers that inhibit adhesion. Colloids Surf B 4:191–197

  39. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

  40. Rosenberg M (2006) Microbial adhesion to hydrocarbons: twenty-five years of doing MATH. Fems Microbiol Lett 262:129–134

  41. Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268

  42. Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry. 2nd ed. Wiley-Interscience, New York

  43. van der Mei HC, Rosenberg M, Busscher HJ (1991) Assessment of microbial cell surface hydrophobicity. In: Mozes N, Handley PS, Busscher HJ, Rouxhlet PG (eds) Microbial cell surface analysis. VCH, New York

  44. van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AGB (1987) Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53:1898–1901

  45. Van Oss CJ (1995) Hydrophobicity of biosurfaces—origin, quantitative determination and interaction energies. Colloids Surf B Biointerfaces 5:91–110

  46. Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale. Appl Microbiol Biotechnol 55:547–555

  47. Warhurst AM, Fewson CA (1994) Microbial-metabolism and biotransformations of styrene. J Appl Bacteriol 77:597–606

  48. Wick LY, deMunain AR, Springael D, Harms H (2002a) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385

  49. Wick LY, Wattiau P, Harms H (2002b) Influence of the growth substrate on the mycolic acid profiles of mycobacteria. Environ Microbiol 4:612–616

  50. Wick LY, Pasche N, Bernasconi SM, Pelz O, Harms H (2003a) Characterization of multiple-substrate utilization by anthracene-degrading Mycobacterium frederiksbergense LB501T. Appl Environ Microbiol 69:6133–6142

  51. Wick LY, Pelz O, Bernasconi SM, Andersen N, Harms H (2003b) Influence of the growth substrate on ester-linked phospho- and glycolipid fatty acids of Mycobacterium sp. LB501T. Environ Microbiol 5:672–680

  52. Wiegant WM, de Bont JAM (1980) A new route for ethylene glycol metabolism in Mycobacterium E44. J General Microb 120:325–331

Download references


This work was supported by a postdoctoral grant (SFRH/BPD/27078/2006) awarded to Carla da C. C. R. de Carvalho by Fundação para a Ciência e a Tecnologia, Portugal.

Author information

Correspondence to Carla C. C. R. de Carvalho.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Carvalho, C.C.C.R., Wick, L.Y. & Heipieper, H.J. Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82, 311–320 (2009).

Download citation


  • Cell adhesion
  • Surface properties
  • Fatty acids
  • Surface tension
  • Cell charge