Applied Microbiology and Biotechnology

, Volume 82, Issue 1, pp 131–140 | Cite as

Heterologous expression of polyhydroxyalkanoate depolymerase from Thermobifida sp. in Pichia pastoris and catalytic analysis by surface plasmon resonance

  • Chitwadee Phithakrotchanakoon
  • Ratama Daduang
  • Arinthip Thamchaipenet
  • Thidarat Wangkam
  • Toemsak Srikhirin
  • Lily Eurwilaichitr
  • Verawat Champreda
Applied Genetics and Molecular Biotechnology

Abstract

A polyhydroxyalkanote depolymerase gene from Thermobifida sp. isolate BCC23166 was cloned and expressed as a C-terminal His6-tagged fusion in Pichia pastoris. Primary structure analysis revealed that the enzyme PhaZ-Th is a member of a proposed new subgroup of SCL-PHA depolymerase containing a proline–serine repeat linker. PhaZ-Th was expressed as two glycosylated forms with apparent molecular weights of 61 and 70 kDa, respectively. The enzyme showed esterase activity toward p-nitrophenyl alkanotes with V max and K m of 3.63 ± 0.16 μmol min−1 mg−1 and 0.79 ± 0.12 mM, respectively, on p-nitrophenyl butyrate with optimal activity at 50–55°C and pH 7–8. Surface plasmon resonance (SPR) analysis demonstrated that PhaZ-Th catalyzed the degradation of poly-[(R)-3-hydroxybutyrate] (PHB) films, which was accelerated in (R)-3-hydroxyvalerate copolymers with a maximum degradation rate of 882 ng cm−2 h−1 for poly[(R)-3-hydroxybutyrate-co-3-hydroxyvalerate] (12 mol% V). Surface deterioration, especially on the amorphous regions of PHB films was observed after exposure to PhaZ-Th by atomic force microscopy. The use of P. pastoris as an alternative recombinant system for bioplastic degrading enzymes in secreted form and a sensitive SPR analytical technique will be of utility for further study of bioplastic degradation.

Keywords

Thermofida sp. Pichia pastoris Polyhydroxyalkanoate Polyhydroxyalkanoate depolymerase Surface plasmon resonance Atomic force microscopy 

Notes

Acknowledgments

The authors would like to thank Dr.Theeraporn Puntheeranurak, Mahidol University for the AFM analysis and Dr. Philip Shaw for proofreading of the manuscript. R.D. was granted YSTP senior project studentship from NSTDA.

References

  1. Abe H, Doi Y (1999) Structural effects on enzymatic degradabilities for poly[(R)-3-hydroxybutyric acid] and its copolymers. Int J Biol Macromol 25:185–192CrossRefGoogle Scholar
  2. Asano Y, Watanabe S (2001) Isolation of poly(3-hydroxybutyrate) (PHB)-degrading microorganisms and characterization of PHB-depolymerase from Arthrobacter sp. strain W6. Biosci Biotechnol Biochem 65:1191–1194CrossRefGoogle Scholar
  3. Braaz R, Wong SL, Jendrossek D (2002) Production of PHA depolymerase A (PhaZ7) from Paucimomas lemoignei in Bacillus subtilis. FEMS Microbiol Lett 209:237–241CrossRefGoogle Scholar
  4. Briese BH, Schmidt B, Jendrossek D (1994) Pseudomonas lemoignei has five poly(hydroxyalkanic acid) (PHA) depolymerase genes: a comparative study on bacterial and eukaryotic PHA depolymerases. J Environ Polym Deg 2:75–87CrossRefGoogle Scholar
  5. Calabia BP, Tokiwa Y (2004) Microbial degradation of poly(D-3-hydroxybutyrate) by a new thermophilic streptomyces isolate. Biotechnol Lett 26:15–19CrossRefGoogle Scholar
  6. Calabia BP, Tokiwa Y (2006) A novel PHB depolymerase from a thermophilic Streptomyces sp. Biotechnol Lett 28:383–388CrossRefGoogle Scholar
  7. Çolak A, Şişik D, Saglam N, Güner S, Çanakçi S, Beldüz AO (2005) Characterization of a thermoalkalophilic esterase from a novel thermophilic bacterium, Anoxybacillus gonensis G2. Bioresour Technol 96:625–631CrossRefGoogle Scholar
  8. Delafield FP, Doudoroff M, Palleroni MJ, Lusty J, Contoploulos R (1965) Decomposition of poly-β-hydroxybutyrate by Pseudomonads. J. Bactriol 90:1455–1466Google Scholar
  9. Dresler K, van den Heuvel J, Müller R-J, Deckwer D-W (2006) Production of a recombinant polyester-cleaving hydrolase from Thermobifida fusca in Escherichia coli. Bioprocess Biosyst Eng 29:169–183CrossRefGoogle Scholar
  10. Gebauer B, Jendrossek D (2006) Assay of poly(3-hydroxybutyrate) depolymerase activity and product determination. Appl Environ Microbiol 72:6094–6100CrossRefGoogle Scholar
  11. Hazer B, Steinbuchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12CrossRefGoogle Scholar
  12. Jendrossek D (2007) Peculiarities of PHA granules preparation and PHA depolymerase activity determination. Appl Microbiol Biotechnol 74:1186–1196CrossRefGoogle Scholar
  13. Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432CrossRefGoogle Scholar
  14. Jendrossek D, Frisse A, Behrends A, Andermann M, Kratzin HD, Stanislawski T, Schlegel HG (1995) Biochemical and molecular characterization of Pseudomonas lemoignei polyhydroxyalkanote depoymerase systems. J Bacteriol 177:596–607Google Scholar
  15. Jendrossek D, Schirmer A, Schelegel HG (1996) Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46:451–463CrossRefGoogle Scholar
  16. Kanokratana P, Chanapan S, Pootanakit K, Eurwilaichitr L (2004) Diversity and abundance of bacteria and archea in Bor Khleung hot spring in Thailand. J Basic Microbiol 44:430–444CrossRefGoogle Scholar
  17. Kanokratana P, Chantasingh D, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2008) Identification and expression of cellobiohydrolase (CBHI) gene from an endophytic fungus, Fusicoccum sp. (BCC4124) in Pichia pastoris. Prot Expr Purif 58:148–153CrossRefGoogle Scholar
  18. Kasuya K, Inoue Y, Tanaka T, Akehata T, Iwata T, Fukui T, Doi Y (1997) Biochemical and molecular characterization of the polyhydroxybutyrate depolymerase of Comamonas acidovorans YM 1609, isolated from fresh water. Appl Environ Microbiol 63:4844–4852Google Scholar
  19. Kasuya K, Takano T, Tezuka Y, Hsieh W-C, Mitomo H, Doi Y (2003) Cloning, expression and characterization of a poly(3-hydroxybutyrate) depolymerase from Marinobacter sp. NK-1. Int J Biol Macromol 33:221–226CrossRefGoogle Scholar
  20. Kim YR, Paik SJ, Ober CK, Coates GW, Mark SS, Ryan TE, Batt CA (2006) Real-time analysis of enzymatic surface-initiated polymerization using surface plasmon resonance (SPR). Macromol Biosci 6:145–152CrossRefGoogle Scholar
  21. Kleeberg I, Hetz C, Kroppenstedt RN, Müller R-J, Deckwer WD (1998) Biodegradation of aliphatic–aromatic copolyesters by Thermomonospora fusca and other thermophilic compost isolates. Appl Environ Microbiol 64:1731–1735Google Scholar
  22. Kroppenstedt RM, Goodfellow M (1992) The family Thermomonosporaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, vol. II. 2nd edn. Springer, Berlin, Germany, pp 1085–1114Google Scholar
  23. Li Z, Lin H, Ishii N, Chen G-Q, Inoue Y (2007) Study of enzymatic degradation of microbial copolyesters consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanotes. Polym Degrad Stab 92:1708–1714CrossRefGoogle Scholar
  24. Ohura T, Kasuya K, Doi Y (1999) Cloning and characterization of the polyhydroxybutyrate depolymerase gene of Pseudomonas stutzeri and analysis of the function of substrate-binding domain. Appl Environ Microbiol 65:189–197Google Scholar
  25. Reddy CS, Ghai R, Rashmi, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146CrossRefGoogle Scholar
  26. Riley ML, Leucht C, Guaczynski S, Hundt C, Brecelj M, Dodson G, Weiss S (2000) High level expression and characterization of a glycosylated covalently-linked dimer of the prion protein. Prot Eng 15:529–536Google Scholar
  27. Romen F, Reinhardt S, Jendrossek D (2004) Thermotolerant poly(3-hydroxybutyrate)-degrading bacteria from hot compost and characterization of the PHB depolymerase of Schlegelella sp. KB1a. Acrh Microbiol 182:157–164Google Scholar
  28. Saito T, Sizuki K, Yamamoto J, Fukui T, Miwa K, Tomita K, Nakanishi S, Odani S, Suzuki J, Ishikawa K (1989) Cloning, nucleotide sequence, and expression in Escherichia coli of the gene for poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis. J Bacteriol 171:184–189Google Scholar
  29. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  30. Shinohe T, Nojiri M, Satio T, Stanislawski T, Jendrossek D (1996) Determination of the active sites of the poly(3-hydroxybutyrate) depolymerase of Pseudomonas lemoignei (PhaZ5) and of Alcaligenes faecalis. FEMS Microbiol Lett 141:103–109CrossRefGoogle Scholar
  31. Sumner C, Sabot A, Turner K, Krause S (2000) A transducer based on enzyme-induced degradation of thin polymer films monitored by surface plasmon resonance. Anal Chem 72:5225–5232CrossRefGoogle Scholar
  32. Sumner C, Krause S, Sabot A, Turner K, McNeil CJ (2001) Biosensor based on enzyme-catalysed degradation of thin polymer films. Biosens Bioelectron 16:709–714CrossRefGoogle Scholar
  33. Takaku H, Kimoto A, Kodaira S, Nashimoto M, Takagi M (2006) Isolation of a Gram positive poly(3-hydroxybutyrate)(PHB)-degrading bacterium from compost, and cloning and characterization of a gene encoding PHB depolymerase of Bacillus megaterium N-18-25-9. FEMS Microbiol Lett 264:152–159CrossRefGoogle Scholar
  34. Takeda M, Koizumi J, Yabe K, Adachi K (1998) Thermostable poly(3-hydroxybutyrate) depolymerase of a thermophilic strain of Leptothrix sp. isolated from a hot spring. J Ferment Bioeng 85:375–380CrossRefGoogle Scholar
  35. Takeda M, Kitashima K, Adachi K, Hanaoka Y, Suzuki I, Koizumi J (2000) Cloning and expression of the gene encoding thermostable poly(3-hydroxybutyrate) depolymerase. J Biosci Bioeng 90:416–421Google Scholar
  36. Tokiwa Y, Calabia BP (2004) Degradation of microbial polyesters. Biotechnol Lett 26:1181–1189CrossRefGoogle Scholar
  37. van der Walle GA, de Koning GJ, Weusthuis RA, Eggink G (2001) Properties, modifications and applications of biopolyesters. Adv Biochem Eng Biotechnol 71:263–291Google Scholar
  38. Yang Y, Malten M, Grote A, Jahn D, Deckwer WD (2007) Codon optimized Thermobifida fusca hydrolase secreted by Bacillus megaterium. Biotechnol Bioeng 96:780–794CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Chitwadee Phithakrotchanakoon
    • 1
  • Ratama Daduang
    • 2
  • Arinthip Thamchaipenet
    • 2
  • Thidarat Wangkam
    • 3
  • Toemsak Srikhirin
    • 3
  • Lily Eurwilaichitr
    • 1
  • Verawat Champreda
    • 1
  1. 1.Enzyme Technology Laboratory, Bioresource Technology UnitNational Center for Genetic Engineering and Biotechnology (BIOTEC)PathumthaniThailand
  2. 2.Department of Genetics, Faculty of ScienceKasetsart UniversityBangkokThailand
  3. 3.Department of Physics, Center of Nanoscience and Nanotechnology, Faculty of SciencesMahidol UniversityBangkokThailand

Personalised recommendations