Advertisement

Applied Microbiology and Biotechnology

, Volume 82, Issue 2, pp 261–269 | Cite as

Molecular and biochemical characterization of a distinct tyrosinase involved in melanin production from Aeromonas media

  • Xia Wan
  • Baozhong Chai
  • Yi Liao
  • Ying Su
  • Tao Ye
  • Ping Shen
  • Xiangdong ChenEmail author
Biotechnologically Relevant Enzymes and Proteins

Abstract

A new tyrosinase was isolated from Aeromonas media strain WS and purified to homogeneity. The purified tyrosinase, termed TyrA, had a molecular mass of 58 kDa and an isoelectric point of 4.90. It exhibited optimal monophenol and diphenol oxidase activities under basic conditions (pH > 8.0). TyrA had a relatively higher affinity to diphenol substrate l-dihydroxyphenylalanine (l-dopa) than many other tyrosinases. EDTA or glutathione notably inhibited the enzymatic activities of TyrA, whereas Triton X-100 and SDS activated them. The full-length TyrA gene was cloned, and it encodes a 518 amino acid protein with little similarities to other reported tyrosinases. However, the purified recombinant TyrA expressed in Escherichia coli demonstrated tyrosinase activity. These results suggest that TyrA is the first reported distinct tyrosinase involved in melanin production in the genus Aeromonas.

Keywords

Aeromonas media Tyrosinase Melanin Diphenol oxidase Monophenol oxidase 

Notes

Acknowledgments

We are grateful to Bin Zhang (Cleveland Clinic Lerner Research Institute, USA), X. Gao (Wuhan University), H. Zhang (Wuhan University), X.P. Chen (Tongji University), and Z. Li (Tongji Hospital) for their helpful comments and discussions.

References

  1. Abbott S, Cheung W, Janda JM (2003) The genus Aeromonas: biochemical characteristics, atypical reactions, and phenotypic identification schemes. J Clin Microbiol 41:2348–2357CrossRefGoogle Scholar
  2. Castro-Sowinski S, Martinez-Drets G, Okon Y (2002) Laccase activity in melanin-producing strains of Sinorhizobium meliloti. FEMS Microbiol Lett 209:119–125CrossRefGoogle Scholar
  3. Christian J, Andrzej M (2000) Laccase activity tests and laccase inhibitors. J Biotechnol 78:193–199CrossRefGoogle Scholar
  4. Claus H, Decker H (2006) Bacterial tyrosinases. Syst Appl Microbiol 29:3–14CrossRefGoogle Scholar
  5. Decker H, Schweikardt T, Nillius D, Salzbrum U, Jaenicke E, Tuczek F (2007) Similar enzyme activation and catalysis in hemocyanins and tyrosinases. Gene 398:183–191CrossRefGoogle Scholar
  6. Gibson LF, George AM (1998) Melanin and novel melanin precursors from Aeromonas media. FEMS Microbiol Lett 169:261–268CrossRefGoogle Scholar
  7. Halaouli S, Asther Mi, Kruus K, Guo L, Hamdi M, Sigoillot JC, Asther M, Lomascolo A (2005) Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological application. J Appl Microbiol 98:332–343CrossRefGoogle Scholar
  8. Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo A (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100:219–232CrossRefGoogle Scholar
  9. Hernandez-Romero D, Solano F, Sanchez-Amat A (2005) Polyphenol oxidase activity expression in Ralstonia solanacearum. Appl Environ Microbiol 71:6808–6815CrossRefGoogle Scholar
  10. Jones PM, George AM (2003) The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 61:682–699CrossRefGoogle Scholar
  11. Kim YJ, Uyama H (2005) Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci 62:1707–1723CrossRefGoogle Scholar
  12. Kong KH, Hong MP, Choi SS, Kim YT, Cho SH (2000) Purification and characterization of a highly stable tyrosinase from Thermomicrobium roseum. Biotechnol Appl Biochem 31:113–118CrossRefGoogle Scholar
  13. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  14. Leu WM, Chen LY, Liaw LL, Lee YH (1992) Secretion of the Streptomyces tyrosinase is mediated through its trans-activator protein, melC1. J Biol Chem 267:20108–20113PubMedGoogle Scholar
  15. Lopez-Serrano D, Sanchez-Amat A, Solano F (2002) Cloning and molecular characterization of a SDS-activated tyrosinase from Marinomonas mediterranea. Pigment Cell Res 15:104–111CrossRefGoogle Scholar
  16. Lopez-Serrano D, Solano F, Sanchez-Amat A (2007) Involvement of a novel copper chaperone in tyrosinase activity and melanin synthesis in Marinomonas mediterranea. Microbiology 153:2241–2249CrossRefGoogle Scholar
  17. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem 281:981–990CrossRefGoogle Scholar
  18. Olson ER, Dunyak DS, Jurss LM, Poorman RA (1991) Identification and characterization of dppA, and Escherichia coli gene encoding a periplasmic dipeptide transport protein. J Bacteriol 173:234–244CrossRefGoogle Scholar
  19. Pinero S, Rivera J, Romero D, Cevallos MA, Martinez A, Bolivar F, Gosset G (2007) Tyrosinase from Rhizobium etli is involved in nodulation efficiency and symbiosis-associated stress resistance. J Mol Microbiol Biotechnol 13:35–44CrossRefGoogle Scholar
  20. Plonka PM, Grabacka M (2006) Melanin synthesis in microorganisms—biotechnological and medical aspects. Acta Biochim Pol 53:429–443CrossRefGoogle Scholar
  21. Ruan L, He W, He J, Sun M, Yu Z (2005) Cloning and expression of mel gene from Bacillus thuringiensis in Escherichia coli. Antonie Van Leeuwenhoek 87:283–288CrossRefGoogle Scholar
  22. Schweikardt T, Olivares C, Solano F, Jaenicke E, Garcia-Borron JC, Decker H (2007) A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations. Pigment Cell Res 20:394–401CrossRefGoogle Scholar
  23. Selinheimo E, Saloheimo M, Ahola E, Westerholm-Parvinen A, Kalkkinen N, Buchert J, Kruus K (2006) Production and characterization of a secreted, C-terminally processed tyrosinase from the filamentous fungus Trichoderma reesei. FEBS J 273:4322–4335CrossRefGoogle Scholar
  24. Tsai TY, Lee YHW (1998) Roles of copper ligands in activation and secretion of Streptomyces tyrosinase. J Biol Chem 273:19243–19250CrossRefGoogle Scholar
  25. Wan X, Liu H, Liao Y, Su Y, Geng J, Yang M, Chen X, Shen P (2007) Isolation of a novel strain of Aeromonas media producing high levels of DOPA-melanin and assessment of the photoprotective role of the melanin in bioinsecticide applications. J Appl Microbiol 103:2533–2541CrossRefGoogle Scholar
  26. Wang N, Hebert DN (2006) Tyrosinase maturation through the mammalian secretory pathway: bring color to life. Pigment Cell Res 19:3–18CrossRefGoogle Scholar
  27. Wang H, Liu W, Ulbrich N (1995) Isolation and characterization of a tyrosinase from the skin of the white silky fowl (Gallina lanigera) employing copper saturated diethylaminoethyl-cellulose. Biochim Biophys Acta 1243:251–255CrossRefGoogle Scholar
  28. Wang G, Aazaz A, Peng Z, Shen P (2000) Cloning and overexpression of a tyrosinase gene mel from Pseudomonas maltophila. FEMS Microbiol Lett 185:23–27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Xia Wan
    • 1
    • 2
  • Baozhong Chai
    • 1
  • Yi Liao
    • 1
  • Ying Su
    • 3
  • Tao Ye
    • 1
  • Ping Shen
    • 1
  • Xiangdong Chen
    • 1
    Email author
  1. 1.State Key Laboratory of Virology, College of Life SciencesWuhan UniversityWuhanChina
  2. 2.Oil Crops Research Institute, The Chinese Academy of Agricultural SciencesWuhanChina
  3. 3.Wuhan No 1 hospitalWuhanChina

Personalised recommendations