Applied Microbiology and Biotechnology

, Volume 81, Issue 6, pp 1087–1096 | Cite as

Aconitase overexpression changes the product ratio of citric acid production by Yarrowia lipolytica

  • Martina HolzEmail author
  • André Förster
  • Stephan MauersbergerEmail author
  • Gerold Barth
Applied Genetics and Molecular Biotechnology


The yeast Yarrowia lipolytica secretes high amounts of various organic acids, like citric acid (CA) and isocitric acid (ICA) under an excess of carbon source and several conditions of growth limitation. Depending on the carbon source used, Y. lipolytica strains produce a mixture of CA and ICA in a characteristic ratio. To examine whether this CA/ICA product ratio can be influenced by gene–dose-dependent overexpression of aconitase (ACO)-encoding gene ACO1, a recombinant Y. lipolytica strain was constructed containing multiple copies of ACO1. The high-level expression of ACO in the ACO1 multicopy integrative transformant resulted in a shift of the CA/ICA product pattern into the direction of ICA. On sunflower oil, a striking increase of the ICA proportion from 35–49% to 66–71% was observed compared to wild-type strains without influencing the total amount of acids (CA and ICA) produced. On glycerol, glucose or sucrose, the ICA proportion increased only moderately from 10–12% to 13–17%. This moderate shift into the direction of ICA was also observed in an icl1-defective strain.


Aconitase ACO1 overexpression Isocitric acid Citric acid Product ratio Yarrowia lipolytica 



This work was partially supported by the Sächsisches Staatsministerium für Umwelt und Landwirtschaft (SMUL) of the Land Saxony, Germany (Grant No. 138811.61/89). We would like to thank Prof. Dr. Rödel (Institute of Genetics, TU Dresden) for providing the Aco1p-antibody.


  1. Akiyama S, Suzuki T, Sumino Y, Nakao Y, Fukuda H (1973) Induction and citric acid productivity of fluoroacetate-sensitive mutant strains of Candida lipolytica. Agr Biol Chem 37:879–884, and 885–888Google Scholar
  2. Anastassiadis S, Rehm H-J (2005) Continuous citric acid secretion by a high specific pH dependent active transport system in yeast Candida oleophila ATCC 20177. Electron J Biotechnol 8:146–161Google Scholar
  3. Anfinsen CB (1955) Aconitase from pig heart muscle. Meth Enzymol 1:695–698Google Scholar
  4. Aurich A, Förster A, Mauersberger S, Barth G, Stottmeister U (2003) Citric acid production from renewable resources by Yarrowia lipolytica. Biotechnol Adv 21:454–455Google Scholar
  5. Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer, Berlin, pp 313-388Google Scholar
  6. Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:219–237Google Scholar
  7. Barth G, Beckerich JM, Dominguez A, Kerscher S, Ogrydziak D, Titorenko V, Gaillardin C (2003) (227–271) Functional genetics of Yarrowia lipolytica. In: de Winde JH (ed) Functional genetics of industrial yeasts. Springer, Berlin, pp 227-271Google Scholar
  8. Casaregola S, Neuveglise C, Lepingle A, Bon E, Feynerol C, Artiguenave F, Wincker P, Gaillardin C (2000) Genomic exploration of the hemiascomycetous yeasts: 17. Yarrowia lipolytica. FEBS Lett 487:95–100PubMedGoogle Scholar
  9. Chen XJ, Wang X, Butow RA (2007) Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA. Proc Natl Acad Sci U S A 104:13738–13743PubMedPubMedCentralGoogle Scholar
  10. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786PubMedGoogle Scholar
  11. De Hertogh B, Hancy F, Goffeau A, Baret PV (2006) Emergence of species-specific transporters during evolution of the hemiascomycete phylum. Genetics 172:771–781PubMedPubMedCentralGoogle Scholar
  12. Dujon B, Sherman D, Fischer G et al (2004) Genome evolution in yeasts. Nature 430:35–44Google Scholar
  13. Ermakova IT, Shishkanova NV, Melnikova OF, Finogenova TV (1986) Properties of Candida lipolytica mutants with the modified glyoxylate cycle and their ability to produce citric and isocitric acid. I. Physiological, biochemical and cytological characteristics of mutants grown on glucose or hexadecane. Appl Microbiol Biotechnol 23:372–377Google Scholar
  14. Epstein CB, Waddle JA, Walker H 4th, Davé V, Thornton J, Macatee TL, Garner HR, Butow RA (2001) Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 12:297–308PubMedPubMedCentralGoogle Scholar
  15. Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543PubMedPubMedCentralGoogle Scholar
  16. Finogenova TV, Shishkanova NV, Ermakova IT, Kataeva IA (1986) Properties of Candida lipolytica mutants with the modified glyoxylate cycle and their ability to produce citric and isocitric acid. II. Synthesis of citric and isocitric acid by Candida lipolytica mutants and peculiarities of their enzyme systems. Appl Microbiol Biotechnol 23:378–383Google Scholar
  17. Finogenova TV, Shishkanova NV, Fausek EA, Eremina SS (1991) Biosynthesis of isocitric acid from ethanol by yeasts. Appl Microbiol Biotechnol 36:231–235Google Scholar
  18. Finogenova TV, Morgunov IG, Kamzolova SV, Chernyavskaya OG (2005) Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Appl Biochem Microbiol 41:418–425Google Scholar
  19. Förster A, Aurich A, Mauersberger S, Barth G (2007a) Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 75:1409–1417PubMedGoogle Scholar
  20. Förster A, Jacobs K, Juretzek T, Mauersberger S, Barth G (2007b) Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica. Appl Microbiol Biotechnol 77:861–869PubMedGoogle Scholar
  21. Gangloff SP, Marguet D, Lauquin GJ (1990) Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. Mol Cell Biol 10:3551–3561PubMedPubMedCentralGoogle Scholar
  22. Gerber J (1999) Untersuchungen zur Optimierung des Elektronentransportsystems für die Cytochrom P450 katalysierte Biotransformation von Steroiden in Yarrowia lipolytica. Diplomarbeit, Institut für Mikrobiologie, TU DresdenGoogle Scholar
  23. Giaever G, Chu AM, Ni L et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391Google Scholar
  24. Heretsch P, Thomas F, Aurich A, Krautscheid H, Sicker D, Giannis A (2008) Syntheses with a chiral building block from the citric acid cycle: (2R,3S)-isocitric acid by fermentation of sunflower oil. Angew Chem Int Ed Engl 47:1958–1960PubMedGoogle Scholar
  25. Hoffmann CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272Google Scholar
  26. Juretzek T, Le Dall M, Mauersberger S, Gaillardin C, Barth G, Nicaud J (2001) Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 18:97–113PubMedPubMedCentralGoogle Scholar
  27. Kamzolova SV, Finogenova TV, Lunina YN, Perevoznikova OA, Minachova LN, Morgunov IG (2007) Characteristics of the growth on rapeseed oil and synthesis of citric and isocitric acids Yarrowia lipolytica yeasts. Microbiology (Moscow) 76:20–24Google Scholar
  28. Kamzolova SV, Finogenova TV, Morgunov IG (2008) Microbial production of citric and isocitric acids from sunflower oil. Food Technol Biotechnol 46:51–59Google Scholar
  29. Kruse K, Förster A, Juretzek T, Mauersberger S, Barth G (2004) Method for the biotechnological production of citric acid by means of a genetically modified yeast Yarrowia lipolytica. WO2004/009828, DE 10333144Google Scholar
  30. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685Google Scholar
  31. Lodi T, Diffels J, Goffeau A, Baret PV (2007) Evolution of the carboxylate Jen transporters in fungi. FEMS Yeast Res 7:646–656PubMedGoogle Scholar
  32. Lowry O, Rosenbrough N, Farr A, Randall R (1951) Protein measurement with folin–phenol reagent. J Biol Chem 193:265–275PubMedPubMedCentralGoogle Scholar
  33. Marchal R, Metche M, Vandecasteele J-P (1980) Intracellular concentrations of citric and isocitrc acids in cultures of the citric acid-excreting yeast Saccharomycopsis lipolytica grown on alkanes. J Gen Microbiol 116:535–538Google Scholar
  34. Mauersberger S, Wang HJ, Gaillardin C, Barth G, Nicaud JM (2001) Insertional mutagenesis in the n-alkane-assimilating yeast Yarrowia lipolytica: generation of tagged mutations in genes involved in hydrophobic substrate utilization. J Bacteriol 183:5102–5109PubMedPubMedCentralGoogle Scholar
  35. Mauersberger S, Kruse K, Barth G (2003) Induction of citric acid/isocitric acid and a-ketoglutaric acid production in the yeast Yarrowia lipolytica. In: Wolf KH, Breunig K, Barth G (eds) Non-conventional yeasts in genetics, biochemistry and biotechnology. Practical protocols. Springer, Berlin, pp 393–400Google Scholar
  36. McCammon MT, Epstein CB, Przybyla-Zawislak B, McAlister-Henn L, Butow RA (2003) Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes. Mol Biol Cell 14:958–972PubMedPubMedCentralGoogle Scholar
  37. Nakahara T, Kaimaktchiev AC, Oogaki-Chino M, Uchida Y, Tabuchi T (1987) Isocitric acid production from n-alkanes by Candida catenulata. Agric Biol Chem 51:2111–2116Google Scholar
  38. Narahari J, Ma R, Wang M, Walden WE (2000) The aconitase function of iron regulatory protein 1. Genetic studies in yeast implicate its role in iron-mediated redox regulation. J Biol Chem 275:16227–16234PubMedGoogle Scholar
  39. Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368PubMedPubMedCentralGoogle Scholar
  40. Netik A, Torres NV, Riol J-M, Kubicek CP (1997) Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim Biophys Acta 1326:287–294PubMedGoogle Scholar
  41. Przybyla-Zawislak B, Gadde DM, Ducharme K, McCammon MT (1999) Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes. Genetics 152:153–166PubMedPubMedCentralGoogle Scholar
  42. Regev-Rudzki N, Karniely S, Ben-Haim NN, Pines O (2005) Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing. Mol Biol Cell 16:4163–4171PubMedPubMedCentralGoogle Scholar
  43. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108PubMedPubMedCentralGoogle Scholar
  44. Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meisinger C (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100:13207–13212PubMedPubMedCentralGoogle Scholar
  45. Stottmeister U, Behrens U, Weissbrodt E, Barth G, Franke-Rinker D, Schulze E (1982) Utilization of paraffins and other noncarbohydrate carbon sources for microbial citric acid synthesis. Z Allg Mikrobiol 22:399–424Google Scholar
  46. Stottmeister U, Aurich A, Wilde H, Andersch J, Schmidt S, Sicker D (2005) White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. J Ind Microbiol Biotechnol 32:651–664PubMedGoogle Scholar
  47. Thevenieau F, Le Dall MT, Nthangeni B, Mauersberger S, Marchal R, Nicaud JM (2007) Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet Biol 44:531–542PubMedPubMedCentralGoogle Scholar
  48. Treton B, Le Dall MT, Heslot H (1978) Excretion of citric and isocitric acid by the yeast Saccharomycopsis lipolytica. Eur J Appl Microbiol Biotechnol 6:67–77Google Scholar
  49. van den Berg MA, de Jong-Gubbels P, Steensma HY (1998) Transient mRNA responses in chemostat cultures as a method of defining putative regulatory elements: application to genes involved in Saccharomyces cerevisiae acetyl-coenzyme A metabolism. Yeast 14:1089–1104PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für MikrobiologieTechnische Universität DresdenDresdenGermany

Personalised recommendations