Advertisement

Diversity of the resident microbiota in a thermophilic municipal biogas plant

  • Agnes Weiss
  • Valérie Jérôme
  • Ruth Freitag
  • Helmut K. Mayer
Environmental Biotechnology

Abstract

Biogas plants continuously convert biological wastes mainly into a mixture of methane, CO2 and H2O—a conversion that is carried out by a consortium of bacteria and archaea. Especially in the municipal plants dedicated towards waste treatment, the reactor feed may vary considerably, exposing the resident microbiota to a changing variety of substrates. To evaluate how and if such changes influence the microbiology, an established biogas plant (6,600 m3, up to 600 m3 biogas per h) was followed over the course of more than 2 years via polymerase chain reaction–denaturing gradient gel electrophoresis of 16S rRNA genes and subsequent sequencing. Both the bacterial and the archaeal community remained stable over the investigation. Of the bacterial consortium, about half of the sequences were in decreasing order of occurrence: Thermoacetogenium sp., Anaerobaculum mobile, Clostridium ultunense, Petrotoga sp., Lactobacillus hammesii, Butyrivibrio sp., Syntrophococcus sucromutans, Olsenella sp., Tepidanaerobacter sp., Sporanaerobacter acetigenes, Pseudoramibacter alactolyticus, Lactobacillus fuchuensis or Lactobacillus sakei, Lactobacillus parabrevis or Lactobacillus spicheri and Enterococcus faecalis. The other half matched closely to ones from similar habitats (thermophilic anaerobic methanogenic digestion). The archaea consisted of Methanobrevibacter sp., Methanoculleus bourgensis, Methanosphaera stadtmanae, Methanimicrococcus blatticola and uncultured Methanomicrobiales. The role of these species in methane production is discussed.

Keywords

Biogas plant Cloning DGGE Methanogenic consortium Microbiota 

Notes

Acknowledgments

The authors are grateful for the financial support provided by Bayerische Forschungsstiftung, Germany, within the project “Molecular biological and procedural characterisation as well as modelling and optimisation of an established biogas plant”. We thank all members of the project team at Rauschert Verfahrenstechnik GmbH and BKW Fürstenwalde GmbH, as well as at the Department of Hydrology and the Chair for Process Biotechnology at the University of Bayreuth for their cooperation and helpful suggestions. The authors especially thank Iris Biedermann (BOKU, Vienna) and Jochen Fesseler (University of Bayreuth) for their assistance with the DGGE and the cloning. Melanie Krist (University of Bayreuth) assisted with the cloning and sequencing experiments. Ms Likke Likke, Department of Hydrology, University of Bayreuth kindly made the acetate data available to us.

References

  1. Ahn JH, Forster CF (2000) Kinetic analyses of the operation of mesophilic and thermophilic anaerobic filters treating a simulated starch wastewater. Proc Biochem 36:19–23CrossRefGoogle Scholar
  2. Ahring BK (1995) Methanogenesis in thermophilic biogas reactors. Anton Leeuw Int J Microb 67:91–102CrossRefGoogle Scholar
  3. Angelidaki I, Ellegaard L, Ahring BK (1993) A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focussing on ammonia inhibition. Biotechnol Bioeng 42:159–166CrossRefGoogle Scholar
  4. Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A (2005) Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7:1104–1115CrossRefGoogle Scholar
  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  6. Goberna M, Insam H, Ingrid FW (2008) Minor changes detected in the microbial community structure and composition after a three week thermophilic digestion of biowastes. GenBank direct submissionGoogle Scholar
  7. Godon JJ, Moriniere J, Moletta M, Gaillac M, Bru V, Delgenes JP (2005) Rarity associated with specific ecological niches in the bacterial world: the ‘Synergistes’ example. Environ Microbiol 7:213–224CrossRefGoogle Scholar
  8. Horn MA, Matthies C, Küsel K, Schramm A, Drake HL (2003) Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl Environ Microbiol 69:74–83CrossRefGoogle Scholar
  9. Huang LN, Thu S, Zhou H, Qu LH (2005) Molecular phylogenetic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill. FEMS Microbiol Lett 242:297–303CrossRefGoogle Scholar
  10. Jetten MSM, Stams AJM, Zehnder AJB (1990) Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol Ecol 73:339–344CrossRefGoogle Scholar
  11. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132Google Scholar
  12. Karakashev D, Batstone DJ, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71:331–338CrossRefGoogle Scholar
  13. Klocke M, Mähnert P, Mundt K, Souidi K, Linke B (2007) Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. System Appl Microbiol 30:139–151CrossRefGoogle Scholar
  14. Krumholz LR, Bryant M (1986) Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methanobrevibacter as electron acceptor systems. Arch Microbiol 143:313–318CrossRefGoogle Scholar
  15. Laloui-Carpentier W, Li T, Vigneron V, Mazeas L, Bouchez T (2006) Methanogenic diversity and activity in municipal solid waste landfill leachates. Anton Leeuw Int J Microb 89:423–434CrossRefGoogle Scholar
  16. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Möller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690CrossRefGoogle Scholar
  17. Leven L, Eriksson ARB, Schnürer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59:683–693CrossRefGoogle Scholar
  18. Li T, Bouchez T, Mazeas L (2007) Microbial functional groups in a thermophilic anaerobic solid waste digestor revealed by stable isotope probing. GenBank direct submissionGoogle Scholar
  19. Malin C, Illmer P (2008) Ability of DNA content and DGGE analysis to reflect the performance condition of an anaerobic biowaste reactor. Microbiol Res 163(5):503–511CrossRefGoogle Scholar
  20. Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technol 74:3–16CrossRefGoogle Scholar
  21. McMahon KD, Stroot PG, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions—II: microbial population dynamics. Water Res 35:1817–1827CrossRefGoogle Scholar
  22. Mead GC (1992) Principles involved in the detection and enumeration of clostridia in foods. Int J Food Microbiol 17:135–143CrossRefGoogle Scholar
  23. Muyzer G, Brinkhoff T, Nüberl U, Santegoeds CM, Schäfer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, Van Elsas JD, De Bruijn FJ (eds) Molecular microbiology ecology manual, 3rd ed, vol. 3.4.4. Kluwer Academic, Dordrecht, The Netherlands, pp 1–27Google Scholar
  24. Nayak SS, Kale SP (2007) Identification of cultivable and non-cultivable bacteria in the predigester slurry of Nisargruna biogas plant. GenBank direct submissionGoogle Scholar
  25. Nikolausz M, Sipos R, Revesz S, Szekely A, Marialigeti K (2005) Observation of bias associated with re-amplification of DNA isolated from denaturing gradient gels. FEMS Microbiol Lett 244:385–390CrossRefGoogle Scholar
  26. Nunoura T, Oida H, Miyazaki J, Miyashita A, Imachi H, Takai K (2008) Quantification of mcrA by fluorescent PCR in methanogenic and methanotrophic microbial communities. FEMS Microbiol Ecol 64:240–247CrossRefGoogle Scholar
  27. Oberthuer A, Zeller R, Gascho A, Taube J, Hermann R (2004) Thermophilic process for biodegradation of mineral oil and fat contaminated wastewater. Water Environmental Management Series 43–50Google Scholar
  28. Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridisation probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240Google Scholar
  29. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  30. Sasaki K, Haruta S, Ueno Y, Ishii M, Igarashi Y (2007) Microbial population in the biomass adhering to supporting material in a packed-bed reactor degrading organic solid waste. Appl Microbiol Biotechnol 75:941–952CrossRefGoogle Scholar
  31. Shin HS, Youn JH (2005) Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 16:33–44CrossRefGoogle Scholar
  32. Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Anton Leeuw Int J Microb 66:271–294CrossRefGoogle Scholar
  33. Tajima K, Arai S, Ogata K, Nagamine T, Matsui H, Nakamura M, Aminov RI, Benno Y (2000) Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 6:273–284CrossRefGoogle Scholar
  34. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefGoogle Scholar
  35. Tang Y, Shigematsu T, Ikbal T, Morimura S, Kida K (2004) The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res 38:2537–2550CrossRefGoogle Scholar
  36. Tatsuzawa T, Hao L, Shimomura T, Miya A (2005) Population dynamics of the anaerobic microbial consortia in thermophilic methanogenic sludge treating toilet paper-containing solid waste. GenBank direct submissionGoogle Scholar
  37. Thompson JD, Gibsonson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX-Windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  38. Weiss A, Jérôme V, Freitag R (2007) Comparison of strategies for the isolation of PCR-compatible, genomic DNA from a municipal biogas plant. J Chromatogr B 853:190–197CrossRefGoogle Scholar
  39. Westermann P, Ahring BK, Mah RA (1989) Threshold acetate concentrations for acetate catabolism by aceticlastic methanogenic bacteria. Appl Environ Microbiol 55:514–515Google Scholar
  40. Wiegel J, Tanner R, Rainey FA (2005) An introduction to the family Clostridiaceae. In: Dworkin M (ed) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd ed. Springer, New YorkGoogle Scholar
  41. Zhang H, Rittmann BE (2008) Ecology associated with focused-pulsed electric field sludge pretreatment in methanogenic systems. GenBank direct submissionGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Agnes Weiss
    • 1
  • Valérie Jérôme
    • 1
  • Ruth Freitag
    • 1
  • Helmut K. Mayer
    • 2
  1. 1.Process BiotechnologyUniversity of BayreuthBayreuthGermany
  2. 2.Department of Food Sciences and Technology, Food Chemistry Division, BOKUUniversity of Natural Resources and Applied Life SciencesViennaAustria

Personalised recommendations