Advertisement

Applied Microbiology and Biotechnology

, Volume 81, Issue 2, pp 319–326 | Cite as

Factors that influence the extracellular expression of streptavidin in Escherichia coli using a bacteriocin release protein

  • Gerhard MikschEmail author
  • Stella Ryu
  • Joe Max Risse
  • Erwin Flaschel
Applied Genetics and Molecular Biotechnology

Abstract

Aiming to increase production of recombinant streptavidin in Escherichia coli, the effect of different leader sequences, different promoter strengths of the bacteriocin release protein (kil), host strain and medium composition on the expression and secretion into the medium was investigated. Expression vectors containing an expression or secretion unit were constructed with different combinations of leader sequence for the streptavidin gene and promoters for the kil gene and streptavidin gene. Results showed that a high-level extracellular production of streptavidin could be accomplished with E. coli BL21(DE3) by using the leader sequence of the phoA gene, a strong stationary-phase promoter for the kil gene and supplementation of the medium by glycine. Using a stationary-phase promoter for the expression of streptavidin had a negative effect.

Keywords

Escherichia coli Streptavidin Secretion Promoter Leader sequence Glycine Bacteriocin release protein 

References

  1. Bayer EA, Wilchek M (1990) Avidin column as a highly efficient and stable alternative for immobilization of ligands for affinity chromatography. J Mol Recogn 3:102–107CrossRefGoogle Scholar
  2. Chaiet L, Wolf FJ (1964) The properties of streptavidin, a biotin-binding protein produced by Streptomyces. Arch Biochem Biophys 106:1–5CrossRefGoogle Scholar
  3. Gallizia A, de Lalla C, Tardone E, Santambrogio P, Brandazza A, Sidoli A, Arosio P (1998) Production of a soluble and functional recombinant streptavidin in Escherichia coli. Prot Expr Purif 14:192–196CrossRefGoogle Scholar
  4. Gonzalez M, Bagatolli LA, Echabe I, Arrondo JLR, Aragana CE, Cantor CR, Fidelio GD (1997) Interaction of biotin with streptavidin thermostability and conformational changes upon binding. J Biol Chem 272:11288–11294CrossRefGoogle Scholar
  5. Hartley RW (1988) Barnase and Barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol 202:913–915CrossRefGoogle Scholar
  6. Kada G, Falk H, Gruber HJ (1999) Accurate measurement of avidin and streptavidin in crude biofluids with a new, optimized biotin-fluorescein conjugate. Biochim Biophys Acta 1427:33–43Google Scholar
  7. Kipriyanov SM, Little M, Kropshofer H, Breitling F, Gotter S, Dubel S (1996) Affinity enhancement of a recombinant antibody: formation of complexes with multiple valency by a single-chain Fv fragment-core streptavidin fusion. Prot Eng 9:203–211CrossRefGoogle Scholar
  8. Kolmiets EI, Zdor NA (1998) Streptavidin, a product of the strain Streptomyces avidinii VKM Ac1047: synthesis, purification and use in immunoassay technology. Russian Biotechnol 2:1–8Google Scholar
  9. Lindqvist Y, Schneider G (1996) Protein-biotin interactions. Curr Opin Struct Biol 6:798–803CrossRefGoogle Scholar
  10. Miksch G, Flaschel E (2001) Secretion of homologous and heterologous recombinant proteins in Escherichia coli and other gram-negative bacteria by using a new secretion system. In: Mertten O-W, Mattanovich D, Larsson G, Cole JA, Lang C, Neubauer P, Porro D, Teixeira de Mattas J (eds) Recombinant protein production with prokaryotic and eukaryotic cells. A comparative view on host physiology. Kluwer, Amsterdam, pp 345–356Google Scholar
  11. Miksch G, Fiedler E, Dobrowolski P, Friehs K (1997) The kil gene of the ColE1 plasmid od Escherichia coli controlled by a growth-phase-dependent promoter mediates the secretion of a heterologous periplasmic protein during the stationary phase. Arch Microbiol 167:143–150CrossRefGoogle Scholar
  12. Miksch G, Kleist S, Friehs K, Flaschel E (2002) Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors. Appl Microbiol Biotechnol 59:685–694CrossRefGoogle Scholar
  13. Miksch G, Bettenworth F, Friehs K, Flaschel E (2005) The sequence upstream of the –10 consensus sequence modulates the strength and induction time of stationary-phase promoters in Escherichia coli. Appl Microbiol Biotechnol 69:312–320CrossRefGoogle Scholar
  14. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  15. Sano T, Cantor CR (1990) Expression of a cloned streptavidin gene in Escherichia coli. Proc Natl Acad Sci U S A 87:142–146CrossRefGoogle Scholar
  16. Sano T, Cantor CR (1991) A streptavidin-protein A chimera that allows one-step production of a variety of specific antibody conjugates. Bio/Technology 9:1378–1381CrossRefGoogle Scholar
  17. Sano T, Cantor CR (1995) Intersubunit contracts made by tryptophan 120 with biotin are essential for both strong biotin binding and biotin-induced tighter subunit association streptavidin. Proc Natl Acad Sci U S A 92:3180–3184CrossRefGoogle Scholar
  18. Sano T, Glazer AN, Cantor CR (1992) A streptavidin metallothionein chimera that allows specific labeling of biological materials with many different heavy metal ions. Proc Natl Acad Sci U S A 89:1534–1538CrossRefGoogle Scholar
  19. Schetters H (1999) Avidin and streptavidin in clinical diagnostics. Biomol Eng 16:73–78CrossRefGoogle Scholar
  20. Skerra A, Schmidt TGM (1999) Application of a peptide ligand for streptavidin: the Strep-tag. Biomol Eng 16:79–86CrossRefGoogle Scholar
  21. Thompson L, Weber P (1993) Construction and expression of a synthetic streptavidin-encoding gene in Escherichia coli. Gene 136:243–246CrossRefGoogle Scholar
  22. Weber PC, Ohlendorf DH, Wendolski JJ, Salemme FR (1989) Structural origins of high-affinity biotin binding to streptavidin. Science 143:85–88CrossRefGoogle Scholar
  23. Wilchek M, Bayer EA (1988) The avidin/biotin complex in bioanalytical applications. Anal. Biochem. 171:1–32CrossRefGoogle Scholar
  24. Wilchek M, Bayer EA (1990) Applications of avidin-biotin technology: Literature survey. Meth Enzym 184:14–45CrossRefGoogle Scholar
  25. Yannish-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: Nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33:103–109CrossRefGoogle Scholar
  26. Yu P, Aristidou A, San KY (1991) Synergistic effect of glycine and bacteriocin release protein in the release of periplasmic protein in recombinant E. coli. Biotechnol Lett 13:311–316CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Gerhard Miksch
    • 2
    Email author
  • Stella Ryu
    • 1
  • Joe Max Risse
    • 1
  • Erwin Flaschel
    • 1
  1. 1.Lehrstuhl für FermentationstechnikUniversität BielefeldBielefeldGermany
  2. 2.Forschungszentrum für Medizintechnik und BiotechnologieBad LangensalzaGermany

Personalised recommendations