Advertisement

Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture

  • Doumit Camilios Neto
  • Joel Alexandre Meira
  • Janete Magali de Araújo
  • David Alexander Mitchell
  • Nadia KriegerEmail author
Biotechnological Products and Process Engineering

Abstract

In recent years, biosurfactants have attracted attention because of their low toxicity, high biodegradability, and good ecological acceptability. However, their production in submerged liquid culture is hampered by the severe foaming that occurs. Solid-state cultivation can avoid this problem. In the current work, we optimized the production of a rhamnolipid biosurfactant by Pseudomonas aeruginosa UFPEDA 614, grown on a solid medium impregnated with a solution containing glycerol. During the study, we increased the production of the biosurfactant over tenfold, with levels reaching 172 g of rhamnolipid per kilogram of dry initial substrate after 12 days. On the basis of the volume of impregnating solution added to the solid support, this yield is of the order of 46 g/L, which is comparable with the best results that have been obtained to date in submerged liquid cultivation. Our results suggest that there is a great potential for using solid-state cultivation for the production of rhamnolipids.

Keywords

Rhamnolipids Biosurfactants Solid-state cultivation Solid-state fermentation Pseudomonas aeruginosa 

Notes

Acknowledgment

The work was supported financially by Corn Products Brasil and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), a Brazilian government agency for the advancement of science and technology. Research scholarships were granted to David Mitchell and Nadia Krieger by CNPq and to Doumit Camilios Neto by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil).

References

  1. Benincasa M, Accorsini FR (2008) Pseudomonas aeruginosa LBI production as an integrated process using the wastes from sunflower-oil refining as a substrate. Bioresour Technol 99:3843–3849CrossRefGoogle Scholar
  2. Benincasa M, Contiero J, Manresa MA, Moraes IO (2002) Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J Food Eng 54:283–288CrossRefGoogle Scholar
  3. Bordas F, Lafrance P, Villemur R (2005) Conditions for effective removal of pyrene from an artificially contaminated soil using Pseudomonas aeruginosa 57SJ rhamnolipids. Environ Pollut 138:69–76CrossRefGoogle Scholar
  4. Costa SGVAO, Nitschke M, Haddad R, Eberlin M, Contiero J (2006) Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils. Process Biochem 41:483–488CrossRefGoogle Scholar
  5. Das K, Mukherjee AK (2007) Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: Some industrial applications of biosurfactants. Process Biochem 42:1191–1199CrossRefGoogle Scholar
  6. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  7. Durand A (2002) Bioreactor designs for solid state fermentation. Biochem Eng J 13:113–125CrossRefGoogle Scholar
  8. Itoh S, Honda H, Tomota F, Suzuki T (1971) Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin. J Antibiot 24:855–859Google Scholar
  9. Karanth NGK, Deo PG, Veenanadig NK (1999) Microbial production of biosurfactants and their importance. Curr Sci 77:116–126Google Scholar
  10. Lang S, Wullbrandt D (1999) Rhamnose lipids—biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32CrossRefGoogle Scholar
  11. Lee KM, Hwang SH, Ha SD, Jang JH, Lim DJ, Kong JY (2004) Rhamnolipid production in batch and fed-batch fermentation using Pseudomonas aeruginosa BYK-2 KCTC 18012P. Biotechnol Bioprocess Eng 9:267–273CrossRefGoogle Scholar
  12. Lee BS, Kim EK (2004) Lipopeptide production from Bacillus sp. GB16 using a novel oxygenation method. Enzyme Microb Technol 35:639–647CrossRefGoogle Scholar
  13. Linhardt RJ, Bakhit R, Daniels L, Mayerl F, Pickenhagen W (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng 33:365–368CrossRefGoogle Scholar
  14. Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633CrossRefGoogle Scholar
  15. Makkar RS, Cameotra SS (2002) An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 58:428–434CrossRefGoogle Scholar
  16. Matsufuji M, Nakata K, Yoshimoto A (1997) High production of rhamnolipids by Pseudomonas aeruginosa growing on ethanol. Biotechnol Lett 19:1213–1215CrossRefGoogle Scholar
  17. Meira JA (2007) Produção de biosurfactantes por fermentação no estado sólido e desenvolvimento de aplicações para tratamento de solos contaminados por hidrocarbonetos. Masters dissertation, Universidade Federal do ParanáGoogle Scholar
  18. Mitchell DA, Berovic M, Krieger N (2000) Biochemical engineering aspects of solid state bioprocessing. Adv Biochem Eng/Biotechnol 68:61–138CrossRefGoogle Scholar
  19. Monteiro SA, Sassaki GL, de Souza LM, Meira JA, Araújo JM, Mitchell DA, Ramos LP, Krieger N (2007) Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids 147:1–13CrossRefGoogle Scholar
  20. Mulligan CN (2005) Environmental application for biosurfactants. Environ Pollut 133:183–198CrossRefGoogle Scholar
  21. Nitschke M, Costa SGVAO, Contiero J (2005a) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21:1593–1600CrossRefGoogle Scholar
  22. Nitschke M, Costa SGVAO, Haddad R, Gonçalves LAG, Eberlin M, Contiero J (2005b) Oil waste as unconventional substrate for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol Prog 21:1562–1566CrossRefGoogle Scholar
  23. Ohno A, Ano T, Shoda M (1992) Production of antifungal antibiotic, iturin in a solid state fermentation by Bacillus subtilis NB22 using wheat bran as a substrate. Biotechnol Lett 14:817–822CrossRefGoogle Scholar
  24. Ohno A, Ano T, Shoda M (1993) Production of the antifungal peptide antibiotic, iturin by Bacillus subtilis NB22 in solid state fermentation. J Ferment Bioeng 75:23–27CrossRefGoogle Scholar
  25. Ohno A, Ano T, Shoda M (1995a) Production of a lipopeptide antibiotic, surfactin, by recombinant Bacillus subtilis in solid state fermentation. Biotechnol Bioeng 47:209–214CrossRefGoogle Scholar
  26. Ohno A, Ano T, Shoda M (1995b) Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in solid-stage fermentation. J Ferment Bioeng 80:517–519CrossRefGoogle Scholar
  27. Ohno A, Ano T, Shoda M (1996) Use of soybean curd residue, okara, for the solid state substrate in the production of a lipopeptide antibiotic, iturin A, by Bacillus subtilis NB22. Process Biochem 31:801–806CrossRefGoogle Scholar
  28. Trummler K, Effenberger F, Syldatk C (2003) An integrated microbial/enzymatic process for production of rhamnolipids and L-(+)-rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874. Eur J Lipid Sci Technol 105:563–571CrossRefGoogle Scholar
  29. Veenanadig NK, Gowthaman MK, Karanth NGK (2000) Scale up studies for the production of biosurfactant in packed column bioreactor. Bioprocess Eng 22:95–99CrossRefGoogle Scholar
  30. Yeh MS, Wei TH, Chang JS (2006) Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochem 41:1799–1805CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Doumit Camilios Neto
    • 1
  • Joel Alexandre Meira
    • 2
  • Janete Magali de Araújo
    • 3
  • David Alexander Mitchell
    • 1
  • Nadia Krieger
    • 2
    • 4
    Email author
  1. 1.Departamento de Bioquímica e Biologia MolecularUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Departamento de QuímicaUniversidade Federal do ParanáCuritibaBrazil
  3. 3.Departamento de AntibióticosUniversidade Federal de PernambucoRecifeBrazil
  4. 4.Department of ChemistryFederal University of ParanáCuritibaBrazil

Personalised recommendations