Applied Microbiology and Biotechnology

, Volume 80, Issue 5, pp 849–862 | Cite as

Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network

  • Joungmin Lee
  • Hongseok Yun
  • Adam M. Feist
  • Bernhard Ø. Palsson
  • Sang Yup Lee
Genomics and Proteomics


To understand the metabolic characteristics of Clostridium acetobutylicum and to examine the potential for enhanced butanol production, we reconstructed the genome-scale metabolic network from its annotated genomic sequence and analyzed strategies to improve its butanol production. The generated reconstructed network consists of 502 reactions and 479 metabolites and was used as the basis for an in silico model that could compute metabolic and growth performance for comparison with fermentation data. The in silico model successfully predicted metabolic fluxes during the acidogenic phase using classical flux balance analysis. Nonlinear programming was used to predict metabolic fluxes during the solventogenic phase. In addition, essential genes were predicted via single gene deletion studies. This genome-scale in silico metabolic model of C. acetobutylicum should be useful for genome-wide metabolic analysis as well as strain development for improving production of biochemicals, including butanol.


Genome-scale metabolic network In silico Metabolic flux analysis Clostridium acetobutylicum Butanol 



We wish to express thanks to Peter Schumann and Jong-Soon Choi for the determination of cell wall and amino acid composition, respectively. Also, we are grateful to Jin Young Lee and Yu Sin Jang for discussion on cell cultivation and analytical procedure. Finally, we thank Tae Yong Kim and Hyun Uk Kim for discussion on flux balance analysis. This work was supported by the Korea–Australia Collaborative Research Project on the Development of Sucrose-Based Bioprocess Platform (N02071165) from the Korean Ministry of Knowledge Economy. Further support by LG Chem Chair Professorship and Microsoft are appreciated.

Supplementary material

253_2008_1654_MOESM1_ESM.pdf (925 kb)
Supplementary Data 1 Gene–protein–reaction relationship, metabolite abbreviation, and whole reaction set used in the model. (PDF 548 KB)
253_2008_1654_MOESM2_ESM.pdf (86 kb)
Supplementary Data 2 Biomass composition of C. acetobutylicum, ATCC 824 used in the model. (PDF 79.6 KB)
253_2008_1654_MOESM3_ESM.pdf (61 kb)
Supplementary Data 3 The list of essential and partially essential genes in synthetic medium from in silico gene deletion analysis. (PDF 60.8 KB)


  1. Amore R, Kotter P, Kuster C, Ciriacy M, Hollenberg CP (1991) Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene 109:89–97CrossRefGoogle Scholar
  2. Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. doi: 101016/jymben200708003
  3. Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675CrossRefGoogle Scholar
  4. Becker SA, Palsson BØ (2005) Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol 5:8–19CrossRefGoogle Scholar
  5. Bonarius H, Schmid G, Tramper J (1997) Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol 15:308–314CrossRefGoogle Scholar
  6. Borodina I, Krabben P, Nielsen J (2005) Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res 15:820–829CrossRefGoogle Scholar
  7. Breitling R, Vitkup D, Barrett MP (2008) New surveyor tools for charting microbial metabolic maps. Nat Rev Microbiol 6:156–161CrossRefGoogle Scholar
  8. Caspi R, Foerster H, Fulcher CA, Hopkinson R, Ingraham J, Kaipa P, Krummenacker M, Paley S, Pick J, Rhee SY, Tissier C, Zhang P, Karp PD (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34:D511–D516CrossRefGoogle Scholar
  9. Desai RP, Harris LM, Welker NE, Papoutsakis ET (1999a) Metabolic flux analysis elucidates the importance of the acid-formation pathways in regulating solvent production by Clostridium acetobutylicum. Metab Eng 1:206–213CrossRefGoogle Scholar
  10. Desai RP, Nielsen LK, Papoutsakis ET (1999b) Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints. J Biotechnol 71:191–205CrossRefGoogle Scholar
  11. Duarte NC, Herrgard MJ, Palsson BØ (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14:1298–1309CrossRefGoogle Scholar
  12. Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534CrossRefGoogle Scholar
  13. Edwards JS, Palsson BØ (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97:5528–5533CrossRefGoogle Scholar
  14. Edwards JS, Ramakrishna R, Schilling CH, Palsson BØ (1999) Metabolic flux balance analysis. In: Lee SY, Papoutsakis ET (eds) Metabolic engineering. Marcel Dekker, New York, pp 13–57Google Scholar
  15. Feist AM, Palsson BO (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26:659–667CrossRefGoogle Scholar
  16. Feist AM, Scholten JC, Palsson BØ, Brockman FJ, Ideker T (2006) Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol Syst Biol 2:20060004CrossRefGoogle Scholar
  17. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121–138CrossRefGoogle Scholar
  18. Francke C, Siezen RJ, Teusink B (2005) Reconstructing the metabolic network of a bacterium from its genome. Trends Microbiol 13:550–558CrossRefGoogle Scholar
  19. Fuhrer T, Chen L, Sauer U, Vitkup D (2007) Computational prediction and experimental verification of the gene encoding the NAD+/NADP+-dependent succinate semialdehyde dehydrogenase in Escherichia coli. J Bacteriol 189:8073–8078CrossRefGoogle Scholar
  20. Green EM, Bennett GN (1996) Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Appl Biochem Biotechnol 57–58:213–221CrossRefGoogle Scholar
  21. Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142(Pt 8):2079–2086Google Scholar
  22. Harris LM, Desai RP, Welker NE, Papoutsakis ET (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 67:1–11CrossRefGoogle Scholar
  23. Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464CrossRefGoogle Scholar
  24. Herrmann G, Jayamani E, Mai G, Buckel W (2008) Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol 190:784–791CrossRefGoogle Scholar
  25. Hou BK, Kim JS, Jun JH, Lee DY, Kim YW, Chae S, Roh M, In YH, Lee SY (2004) BioSilico: an integrated metabolic database system. Bioinformatics 20:3270–3272CrossRefGoogle Scholar
  26. Huang KX, Huang S, Rudolph FB, Bennett GN (2000) Identification and characterization of a second butyrate kinase from Clostridium acetobutylicum ATCC 824. J Mol Microbiol Biotechnol 2:33–38Google Scholar
  27. Huynen MA, Dandekar T, Bork P (1999) Variation and evolution of the citric-acid cycle: a genomic perspective. Trends Microbiol 7:281–291CrossRefGoogle Scholar
  28. Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316CrossRefGoogle Scholar
  29. Jones DT, Woods DR (1986) Acetone–butanol fermentation revisited. Microbiol Rev 50:484–524Google Scholar
  30. Jungermann K, Leimenstoll G, Rupprecht E, Thauer RK (1971) Demonstration of NADH-ferredoxin reductase in two saccharolytic Clostridia. Arch Mikrobiol 80:370–372CrossRefGoogle Scholar
  31. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357CrossRefGoogle Scholar
  32. Keis S, Shaheen R, Jones DT (2001) Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Microbiol 51:2095–2103Google Scholar
  33. Kim BH, Bellows P, Datta R, Zeikus JG (1984) Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields. Appl Environ Microbiol 48:764–770Google Scholar
  34. Kim TY, Kim HU, Park JM, Song H, Kim JS, Lee SY (2007) Genome-scale analysis of Mannheimia succiniciproducens metabolism. Biotechnol Bioeng 97:657–671CrossRefGoogle Scholar
  35. Kotter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18:493–500CrossRefGoogle Scholar
  36. Lee D, Redfern O, Orengo C (2007a) Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol 8:995–1005CrossRefGoogle Scholar
  37. Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007b) Systems metabolic engineering of Escherichia coli for l-threonine production. Mol Syst Biol 3:149CrossRefGoogle Scholar
  38. Lee SH, Park SJ, Lee SY, Hong SH (2008) Biosynthesis of enantiopure (S)-3-hydroxybutyric acid in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 79:633–641CrossRefGoogle Scholar
  39. Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK (2008) Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 190:843–850CrossRefGoogle Scholar
  40. Luo RY, Liao S, Tao GY, Li YY, Zeng S, Li YX, Luo Q (2006) Dynamic analysis of optimality in myocardial energy metabolism under normal and ischemic conditions. Mol Syst Biol 2:2006.0031CrossRefGoogle Scholar
  41. Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Biotechnology (NY) 10:190–195CrossRefGoogle Scholar
  42. Monot F, Martin JR, Petitdemange H, Gay R (1982) Acetone and butanol production by Clostridium acetobutylicum in a synthetic medium. Appl Environ Microbiol 44:1318–1324Google Scholar
  43. Monot F, Engasser JM, Petitdemange H (1984) Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridium acetobutylicum. Appl Microbiol Biotechnol 19:422–426CrossRefGoogle Scholar
  44. Nair RV, Bennett GN, Papoutsakis ET (1994) Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J Bacteriol 176:871–885Google Scholar
  45. Nölling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois J, Qiu D, Hitti J, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838CrossRefGoogle Scholar
  46. Overheard MA, Puchalka J, Fryer KE, Martins dos Santos VA, Papin JA (2008) Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol 190:2790–2803CrossRefGoogle Scholar
  47. Oh YK, Palsson BØ, Park SM, Schilling CH, Mahadevan R (2007) Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem 282:28791–28799CrossRefGoogle Scholar
  48. Ounine K, Petitdemange H, Raval G, Gay R (1983) Acetone–butanol production from pentoses by Clostridium acetobutylicum. Biotechnol Lett 5:605–610CrossRefGoogle Scholar
  49. Paredes CJ, Alsaker KV, Papoutsakis ET (2005) A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 3:969–978CrossRefGoogle Scholar
  50. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104:7797–7802CrossRefGoogle Scholar
  51. Park JH, Lee SY, Kim TY, Kim HU (2008) Application of systems biology for bioprocess development. Trends Biotechnol 26:404–412CrossRefGoogle Scholar
  52. Petitdemange H, Cherrier C, Bengone JM, Gay R (1977) Study of the NADH and NADPH-ferredoxin oxidoreductase activities in Clostridium acetobutylicum. Can J Microbiol 23:152–160CrossRefGoogle Scholar
  53. Reed JL, Famili I, Thiele I, Palsson BØ (2006a) Towards multidimensional genome annotation. Nat Rev Genet 7:130–141CrossRefGoogle Scholar
  54. Reed JL, Patel TR, Chen KH, Joyce AR, Applebee MK, Herring CD, Bui OT, Knight EM, Fong SS, Palsson BO (2006b) Systems approach to refining genome annotation. Proc Natl Acad Sci U S A 103:17480–17484CrossRefGoogle Scholar
  55. Schilling CH, Edwards JS, Palsson BØ (1999) Toward metabolic phenomics: analysis of genomic data using flux balances. Biotechnol Prog 15:288–295CrossRefGoogle Scholar
  56. Schilling CH, Edwards JS, Letscher D, Palsson BØ (2000) Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol Bioeng 71:286–306CrossRefGoogle Scholar
  57. Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99:15112–15117CrossRefGoogle Scholar
  58. Senger RS, Papoutsakis ET (2008a) Genome-scale model for Clostridium acetobutylicum. Part 1: metabolic network resolution and analysis. Biotechnol Bioeng (in press)Google Scholar
  59. Senger RS, Papoutsakis ET (2008b) Genome-scale model for Clostridium acetobutylicum. Part 2: development of specific proton flux states and numerically-determined sub-systems. Biotechnol Bioeng (in press)Google Scholar
  60. Shao L, Hu S, Yang Y, Gu Y, Chen J, Yang Y, Jiang W, Yang S (2007) Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res 17:963–965CrossRefGoogle Scholar
  61. Shinto H, Tashiro Y, Yamashita M, Kobayashi G, Sekiguchi T, Hanai T, Kuriya Y, Okamoto M, Sonomoto K (2007) Kinetic modeling and sensitivity analysis of acetone–butanol–ethanol production. J Biotechnol 131:45–56CrossRefGoogle Scholar
  62. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic, New YorkGoogle Scholar
  63. Tangney M, Mitchell WJ (2000) Analysis of a catabolic operon for sucrose transport and metabolism in Clostridium acetobutylicum ATCC 824. J Mol Microbiol Biotechnol 2:71–80Google Scholar
  64. Tangney M, Mitchell WJ (2007) Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824. Appl Microbiol Biotechnol 74:398–405CrossRefGoogle Scholar
  65. Thiele I, Vo TD, Price ND, Palsson BØ (2005) Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol 187:5818–5830CrossRefGoogle Scholar
  66. Varma A, Palsson BØ (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60:3724–3731Google Scholar
  67. Wang Q, Wu C, Chen T, Chen X, Zhao X (2006) Expression of galactose permease and pyruvate carboxylase in Escherichia coli ptsG mutant increases the growth rate and succinate yield under anaerobic conditions. Biotechnol Lett 28:89–93CrossRefGoogle Scholar
  68. Yu Y, Tangney M, Aass HC, Mitchell WJ (2007) Analysis of the mechanism and regulation of lactose transport and metabolism in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 73:1842–1850CrossRefGoogle Scholar
  69. Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Joungmin Lee
    • 1
  • Hongseok Yun
    • 1
  • Adam M. Feist
    • 2
  • Bernhard Ø. Palsson
    • 2
  • Sang Yup Lee
    • 1
    • 3
  1. 1.Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering (BK21 Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology and Institute for the BioCenturyKAISTDaejeonRepublic of Korea
  2. 2.Department of BioengineeringUniversity of CaliforniaSan Diego, La JollaUSA
  3. 3.Department of Bio and Brain Engineering, Department of Biological Sciences and Bioinformatics Research CenterKAISTDaejeonRepublic of Korea

Personalised recommendations