Advertisement

Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood

  • Holy Ravalason
  • Gwénaël Jan
  • Daniel Mollé
  • Maryvonne Pasco
  • Pedro M. Coutinho
  • Catherine Lapierre
  • Brigitte Pollet
  • Frédérique Bertaud
  • Michel Petit-Conil
  • Sacha Grisel
  • Jean-Claude Sigoillot
  • Marcel Asther
  • Isabelle Herpoël-Gimbert
Genomics and Proteomics

Abstract

Proteomic analysis was performed to determine and differentiate the composition of the secretomes of Phanerochaete chrysosporium CIRM-BRFM41, a peroxidase hypersecretory strain grown under ligninolytic conditions and on softwood chips under biopulping conditions. Extracellular proteins from both cultures were analyzed by bidimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. A total of 37 spots were identified. The secretome in liquid synthetic medium comprised mainly peroxidases, while several wood-degrading enzymes and enzymes involved in fungal metabolism were detected in biopulping cultures on softwood. This prompted an analysis of the impact of secretome modulation in the presence of softwood chips. Biotreated wood was submitted to kraft cooking and chemical bleaching using chlorine dioxide. The fungal pre-treatment led to a significant increase in pulp yield and a better bleachability of the pulp. This bleachability improvement could be explained by the production of specific lignocellulose-degrading enzymes.

Keywords

Phanerochaete chrysosporium Secretome Softwood Chemical pulping 

Notes

Acknowledgment

This work was supported by the French National Research Agency Program PNRB as part of the Stratégie de Prétraitements Physiques, Enzymatiques et Chimiques Appliquées à la Biomasse-Bio-Ethanol (SPECABBE) project. The authors thank F. Legée and L. Cézard for the lignin analyses.

References

  1. Abbas A, Koc H, Liu F, Tien M (2005) Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr Genet 47:49–56CrossRefGoogle Scholar
  2. Akhtar M, Blanchette RA, Kirk TK (1997) Fungal delignification and biomechanical pulping of wood. In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 159–195Google Scholar
  3. Akhtar M, Blanchette RA, Myers G, Kirk TK (1998) An overview of biomechanical pulping research. In: Akhtar M, Young RA (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 309–340Google Scholar
  4. Aro N, Pakula T, Penttilä M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739CrossRefGoogle Scholar
  5. Atik C, Imamoglu S, Bermek H (2006) Impact of xylanase pre-treatment on peroxide bleaching stage of biokraft pulp. Int Biodeterior Biodegrad 58:22–26CrossRefGoogle Scholar
  6. Baldwin MA (2004) Protein identification by mass spectrometry: issues to be considered. Mol Cell Proteomics 3:1–9Google Scholar
  7. Bonnarme P, Asther M, Asther Ma (1993) Influence of primary and secondary proteases produced by free and immobilized cells of the white-rot fungus Phanerochaete chrysosporium on lignin peroxidase activity. J Biotechnol 30:271–282CrossRefGoogle Scholar
  8. Breves R, Bronnenmeier K, Wild N, Lottspeich F, Staudenbauer WL, Hofemeister J (1997) Genes encoding two different β-glucosidases of Thermoanaerobacter brockii are clustered in a common operon. Appl Environ Microbiol 63:3902–3910Google Scholar
  9. Brumer 3rd H, Sims PF, Sinnott ML (1999) Lignocellulose degradation by Phanerochaete chrysosporium: purification and characterization of the main α-galactosidase. Biochem J 339:43–53CrossRefGoogle Scholar
  10. Camarero S, Galletti GC, Martinez AT (1994) Preferential degradation of phenolic lignin units by two white rot fungi. Appl Environ Microbiol 60:4509–4516Google Scholar
  11. Camarero S, Galletti GC, Martínez AT (1997) Demonstration of in situ oxidative degradation of lignin side chains by two white-rot fungi using analytical pyrolysis of methylated wheat straw. Rapid Commun Mass Spectrom 11:331–334CrossRefGoogle Scholar
  12. Castanares A, Hay AJ, Gordon AH, McCrae SI, Wood TM (1995) D-Xylan-degrading enzyme system from the fungus Phanerochaete chrysosporium: isolation and partial characterisation of an α-(4-O-methyl)-d-glucuronidase. J Biotechnol 43:183–194CrossRefGoogle Scholar
  13. Charmont S, Jamet E, Pont-Lezica R, Canut H (2005) Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: improved recovery following removal of phenolic compounds. Phytochemistry 66:453–461CrossRefGoogle Scholar
  14. Cullen D, Kersten PJ (2004) Enzymology and molecular biology of lignin degradation. In: Brambl R, Marzulf GA (eds) The mycota III. Biochemistry and molecular biology. Springer, Berlin, pp 249–273Google Scholar
  15. da Silva Perez D, Moreau J, Nougier P, Themelin A, Chantre G (2004) Effect of storage conditions on the wood and pulp quality of windthrow trees. Proceedings of the 8th European Workshop on Lignocellulosics and Pulps, Latvian State Institute of Wood Chemistry, Riga, Latvia, August 22–25, 2004, pp 295–298Google Scholar
  16. Dence CW (1992) The determination of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 33–61Google Scholar
  17. Dobozi MS, Szakacs G, Bruschi CV (1992) Xylanase activity of Phanerochaete chrysosporium. Appl Environ Microbiol 58:3466–3471Google Scholar
  18. Gaskell J, Stewart P, Kersten PJ, Covert SF, Reiser J, Cullen D (1994) Establishment of genetic linkage by allele-specific polymerase chain reaction: application to the lignin peroxidase gene family of Phanerochaete chrysosporium. Biotechnology 12:1372–1375CrossRefGoogle Scholar
  19. Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:601–605CrossRefGoogle Scholar
  20. Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:605–622Google Scholar
  21. Henrissat B (1991) A classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochem J 280:309–316Google Scholar
  22. Herpoël I, Asther M, Sigoillot JC (1999) Design and scale up of a process for manganese peroxidase production using the hypersecretory strain Phanerochaete chrysosporium I-1512. Biotechnol Bioeng 65:468–473CrossRefGoogle Scholar
  23. Igarashi K, Tani T, Rie K, Masahiro S (2003) Family 3 β-glucosidase from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium is a glucan 1,3-β-glucosidase. J Biosci Bioeng 95:572–576Google Scholar
  24. Ishida T, Yaoi K, Hiyoshi A, Igarashi K, Samejima M (2007) Substrate recognition by glycoside hydrolase family 74 xyloglucanase from the basidiomycete Phanerochaete chrysosporium. FEBS J 274:5727–5736CrossRefGoogle Scholar
  25. Itoh T, Hashimoto W, Mikami B, Murata K (2006) Substrate recognition by unsaturated glucuronyl hydrolase from Bacillus sp. GL1. Biochem Biophys Res Comm 344:253–262CrossRefGoogle Scholar
  26. Jorge JA, Polizeli ML, Thevelein JM, Terenzi HF (1997) Trehalases and trehalose hydrolysis in fungi. FEMS Microbiol Lett 154:165–171CrossRefGoogle Scholar
  27. Kang KY, Jo BM, Oh JS, Mansfield SD (2003) Biopulping of hybrid poplar improves chemical and energy savings during kraft pulping. Wood Fiber Sci 35:594–600Google Scholar
  28. Kansoh AL, Nagieb ZA (2004) Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie Van Leeuwenhoek 85:103–114CrossRefGoogle Scholar
  29. Kersten PJ (1990) Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proc Natl Acad Sci U S A 87:2936–2940CrossRefGoogle Scholar
  30. Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169:2195–2201Google Scholar
  31. Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87CrossRefGoogle Scholar
  32. Kirk TK, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young RA, Masood A (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 273–307Google Scholar
  33. Lapierre C, Rolando C (1988) Thioacidolysis of pre-methylated lignin samples from pine compression and poplar woods. Holzforschung 42:1–4CrossRefGoogle Scholar
  34. Larrondo L, Vicuna R, Cullen D (2005) Phanerochaete chrysosporium genomics. In: Arora Berka DKR (ed) Applied mycology and biotechnology. Elsevier, Amsterdam, pp 315–352Google Scholar
  35. Laugero C, Sigoillot JC, Moukha S, Frasse P, Bellon-Fontaine M-N, Bonnarme P, Mougin C, Asther M (1996) Selective hyperproduction of manganese peroxidases by Phanerochaete chrysosporium I-1512 immobilized on nylon net in a bubble column reactor. Appl Microbiol Biotechnol 44:717–723Google Scholar
  36. Li B, Renganathan V (1998) Gene cloning and characterization of a novel cellulose-binding β-glucosidase from Phanerochaete chrysosporium. Appl Environ Microbiol 64:2748–2754Google Scholar
  37. Mai V, Wiegel J, Lorenz WW (2000) Cloning, sequencing, and characterization of the bifunctional xylosidase-arabinosidase from the anaerobic thermophile Thermoanaerobacter ethanolicus. Gene 247:137–143CrossRefGoogle Scholar
  38. Maras M, Callewaert N, Piens K, Claeyssens M, Martinet W, Dewaele S, Contreras H, Dewerte I, Penttila M, Contreras R (2000) Molecular cloning and enzymatic characterization of a Trichoderma reesei 1,2-α-d-mannosidase. J Biotechnol 77:255–263CrossRefGoogle Scholar
  39. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700CrossRefGoogle Scholar
  40. Maruyama Y, Nakajima T, Ichishima E (1994) A 1,2-α-d-mannosidase from a Bacillus sp.: purification, characterization, and mode of action. Carbohydr Res 251:89–98CrossRefGoogle Scholar
  41. Muñoz IG, Ubhayasekera W, Henriksson H, Szabó I, Pettersson G, Johansson G, Mowbray SL, Ståhlberg J (2001) Family 7 cellobiohydrolases from Phanerochaete chrysosporium: crystal structure of the catalytic module of Cel7D (CBH58) at 1.32 Å resolution and homology models of the isozymes. J Mol Biol 314:1097–1111CrossRefGoogle Scholar
  42. Myette JR, Shriver Z, Kiziltepe T, McLean MW, Venkataraman G, Sasisekharan R (2002) Molecular cloning of the heparin/heparan sulfate delta 4,5 unsaturated glycuronidase from Flavobacterium heparinum, its recombinant expression in Escherichia coli, and biochemical determination of its unique substrate specificity. Biochemistry 41:7424–7434CrossRefGoogle Scholar
  43. Nankai H, Hashimoto W, Miki H, Kawai S, Murata K (1999) Microbial system for polysaccharide depolymerization: enzymatic route for xanthan depolymerization by Bacillus sp. strain GL1. Appl Environ Microbiol 65:2520–2526Google Scholar
  44. Parrou JL, Jules M, Beltran G, François J (2005) Acid trehalase in yeasts and filamentous fungi: localization, regulation and physiological function. FEMS Yeast Res 5:503–511CrossRefGoogle Scholar
  45. Paszczynski A, Huynh VB, Crawford R (1986) Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 244:750–765CrossRefGoogle Scholar
  46. Puchart V, Katapodis P, Biely P, Kremnicky L, Christakopoulos P, Vrsanska M, Kekos D, Macris BJ, Bhat MK (1999) Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus. Enzyme Microb Technol 24:355–361CrossRefGoogle Scholar
  47. Rabilloud T, Carpentier G, Tarroux P (1988) Improvement and simplification of low-background silver staining of proteins by using sodium dithionite. Electrophoresis 9:288–291CrossRefGoogle Scholar
  48. Reid ID (1998) Fate of residual lignin during delignification of kraft pulp by Trametes versicolor. Appl Environ Microbiol 64:2117–2125Google Scholar
  49. Sachslehner A, Nidetzky B, Kulbe KD, Haltrich D (1998) Induction of mannanase, xylanase, and endoglucanase activities in Sclerotium rolfsii. Appl Environ Microbiol 64:594–600Google Scholar
  50. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRefGoogle Scholar
  51. Sato S, Liu F, Koc H, Tien M (2007) Expression analysis of extracellular proteins from Phanerochaete chrysosporium grown on different liquid and solid substrates. Microbiology 153:3023–3033CrossRefGoogle Scholar
  52. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometry sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858CrossRefGoogle Scholar
  53. Stals I, Sandra K, Geysens S, Contreras R, Van Beeumen J, Claeyssens M (2004) Factors influencing glycosylation of Trichoderma reesei cellulases. I: Post-secretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14:713–724CrossRefGoogle Scholar
  54. Stewart P, Cullen D (1999) Organization and differential regulation of a cluster of lignin peroxidase genes of Phanerochaete chrysosporium. J Bacteriol 181:3427–3432Google Scholar
  55. Toshiaki U, Higuchi T (1989) Cleavages of aromatic ring and β-O-4 bond of synthetic lignin (DHP) by lignin peroxidase. FEBS Lett 242:325–329CrossRefGoogle Scholar
  56. Uzcategui E, Ruiz A, Montesino R, Johansson G, Pettersson G (1991) The 1,4-β-d-glucan cellobiohydrolases from Phanerochaete chrysosporium. I. A system of synergistically acting enzymes homologous to Trichoderma reesei. J Biotechnol 19:271–285CrossRefGoogle Scholar
  57. Vanden Wymelenberg A, Covert S, Cullen D (1993) Identification of the gene encoding the major cellobiohydrolase of the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 59:3492–3494Google Scholar
  58. Vanden Wymelenberg A, Sabat, G, Martinez, D, Rajangam AS, Teeri TT, Gaskell J, Kersten PJ, Cullen D (2005) The Phanerochaete chrysosporium secretome: database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium. J Biotechnol 118:17–34CrossRefGoogle Scholar
  59. Vanden Wymelenberg A, Minges P, Sabat G, Martinez D, Aerts A, Salamov A, Grigoriev I, Shapiro H, Putnam N, Belinky P, Dosoretz C, Gaskell J, Kersten P, Cullen D (2006a) Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet Biol 43:343–356CrossRefGoogle Scholar
  60. Vanden Wymelenberg A, Sabat G, Mozuch M, Kersten PJ, Cullen D, Blanchette RA (2006b) Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 72:4871–4877CrossRefGoogle Scholar
  61. Wattenberg A, Organ AJ, Schneider K, Tyldesley R, Bordoli R, Bateman RH (2002) Sequence dependent fragmentation of peptides generated by MALDI quadrupole time-of-flight (MALDI Q-TOF) mass spectrometry and its implications for protein identification. J Am Soc Mass Spectrom 13:772–783CrossRefGoogle Scholar
  62. Yoshida T, Inoue T, Ichishima E (1993) 1,2-α-d-Mannosidase from Penicillium citrinum: molecular and enzymic properties of two isoenzymes. Biochem J 290:349–354Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Holy Ravalason
    • 1
    • 2
    • 3
    • 4
  • Gwénaël Jan
    • 5
    • 6
  • Daniel Mollé
    • 5
    • 6
  • Maryvonne Pasco
    • 5
    • 6
  • Pedro M. Coutinho
    • 7
    • 8
  • Catherine Lapierre
    • 9
    • 10
  • Brigitte Pollet
    • 9
    • 10
  • Frédérique Bertaud
    • 4
  • Michel Petit-Conil
    • 4
  • Sacha Grisel
    • 1
    • 2
    • 3
  • Jean-Claude Sigoillot
    • 1
    • 2
    • 3
  • Marcel Asther
    • 1
    • 2
    • 3
  • Isabelle Herpoël-Gimbert
    • 1
    • 2
    • 3
  1. 1.INRA, UMR1163Biotechnologie des Champignons FilamenteuxMarseilleFrance
  2. 2.Université Aix-Marseille I, UMR1163, BCFMarseilleFrance
  3. 3.Université Aix-Marseille II, UMR1163, BCFMarseilleFrance
  4. 4.Centre Technique du PapierDomaine UniversitaireCedex 9France
  5. 5.INRA, UMR1253Science et Technologie du Lait et de l’OeufRennesFrance
  6. 6.Agrocampus RennesUMR1253, STLORennesFrance
  7. 7.CNRS, UMR6098Architecture et Fonction des Macromolécules BiologiquesMarseilleFrance
  8. 8.Université Aix-Marseille II, UMR6098, AFMBMarseilleFrance
  9. 9.INRA, UMR206Chimie BiologiqueThierval-GrignonFrance
  10. 10.AgroParisTech, UMR206Chimie BiologiqueThierval-GrignonFrance

Personalised recommendations