Synthesis and application of dipeptides; current status and perspectives

Mini-Review

Abstract

The functions and applications of l-α-dipeptides (dipeptides) have been poorly studied compared with proteins or amino acids. Only a few dipeptides, such as aspartame (l-aspartyl-l-phenylalanine methyl ester) and l-alanyl-l-glutamine (Ala-Gln), are commercially used. This can be attributed to the lack of an efficient process for dipeptide production though various chemical or chemoenzymatic method have been reported. Recently, however, novel methods have arisen for dipeptide synthesis including a nonribosomal peptide-synthetase-based method and an l-amino acid α-ligase-based method, both of which enable dipeptides to be produced through fermentative processes. Since it has been revealed that some dipeptides have unique physiological functions, the progress in production methods will undoubtedly accelerate the applications of dipeptides in many fields. In this review, the functions and applications of dipeptides, mainly in commercial use, and methods for dipeptide production including already proven processes as well as newly developed ones are summarized. As aspartame and Ala-Gln are produced using different industrial processes, the manufacturing processes of these two dipeptides are compared to clarify the characteristics of each procedure.

Keywords

Dipeptide l-Amino acid α-ligase NRPS Aspartame l-Alanyl-l-glutamine 

References

  1. Abumard NN, Morse EL, Lochs H, Williams PE, Adibi SA (1989) Possible sources of glutamine for parenteral nutrition: impact on glutamine metabolism. Am J Physiol 257:E228–E234Google Scholar
  2. Aboulmagd E, Oppermann-Sanio FB, Steinbuchel A (2001) Purification of Synechocystis sp. strain PCC6308 cyanophycin synthetase and its characterization with respect to substrate and primer specificity. Appl Environ Microbiol 67:2176–2182CrossRefGoogle Scholar
  3. Adibi SA (1997) The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology 113:332–340CrossRefGoogle Scholar
  4. Ager DJ, Pantaleone DP, Henderson SA, Katritzky AR, Prakash I, Walters DE (1998) Commercial, synthetic nonnutritive sweeteners. Angew Chem Int Ed 37:1802–1817CrossRefGoogle Scholar
  5. Albers S, Wernerman J, Stehle P, Vinnars E, Furst P (1988) Availability of amino acids supplied intravenously in healthy man as synthetic dipeptides: kinetic evaluation of L-alanyl-L-glutamine and glycyl-L-tyrosine. Clinical Sci 75:463–468Google Scholar
  6. Albini N, Auricchio S, Minisci F (1985) Base catalysis and solvent effect in the synthesis of aspartame. Chem Ind 15:484–485Google Scholar
  7. Ariyoshi Y, Nagao M, Naotake (1974a) Method of producing α-L-aspartyl-L-phenylalanine lower alkyl ester. US Patent no. 3,786,039Google Scholar
  8. Ariyoshi Y, Yamatani T, Uchiyama N, Yasuda N, Toi K (1974b) Method of producing α-L-aspartyl-L-phenylalanine alkyl ester. US Patent no. US 3,833,553Google Scholar
  9. Ashiuchi A, Misono H (2002) Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl Microbiol Biotechnol 59:9–14CrossRefGoogle Scholar
  10. Babizhayev MA, Deyev AI, Yermakova VN, Semiletov YA, Davydova NG, Kurysheva NI, Zhukotskii AV, Goldman IM (2001) N-Acetylcarnosine, a natural histidine-containing dipeptide, as a potent ophthalmic drug in treatment of human cataracts. Peptides 22:979–994CrossRefGoogle Scholar
  11. Bachman GL, Oftedahl ML, Vineyard BD (1976) Process for the preparation of α-L-aspartyl-L-phenylalanine alkyl esters. US Patent no. US 3,933,781Google Scholar
  12. Begum G, Cunliffe A, Leveritt M (2005) Physiological role of carnosine in contracting muscle. Int J Sport Nutr Exerc Metab 15:493–514Google Scholar
  13. Belshaw PJ, Walsh CT, Stachelhaus T (1999) Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science 284:486–489CrossRefGoogle Scholar
  14. Bergmann M, Fraenkel-Conrat H (1937) The role of specificity in the enzymatic synthesis of proteins. J Biol Chem 119:707–720Google Scholar
  15. Bergmann M, Fraenkel-Conrat H (1938) The enzymatic synthesis of peptide bonds. J Biol Chem 124:1–6Google Scholar
  16. Bongers J, Heimer EP (1994) Recent applications of enzymatic peptide synthesis. Peptides 15:183–193CrossRefGoogle Scholar
  17. Bordusa F (2002) Proteases in organic synthesis. Chem Rev 102:4817–4867CrossRefGoogle Scholar
  18. Candela T, Fouet A (2006) Poly-gamma-glutamate in bacteria. Mol Microbiol 60:1091–1098CrossRefGoogle Scholar
  19. Cho CH, Luk CT, Ogle CW (1991) The membrane-stabilizing action of zinc carnosine (Z-103) in stress-induced gastric ulceration in rats. Life Sci 49:PL189–PL194CrossRefGoogle Scholar
  20. Cloninger MR, Baldwin RE (1970) Aspartyl phenylalanine methyl ester: a low-calorie sweetener. Science 170:81–82CrossRefGoogle Scholar
  21. de Armas RR, Diaz HG, Molina R, Gonzalez MP, Uriarte E (2004) Stochastic-based descriptors studying peptides biological properties: modeling the bitter tasting threshold of dipeptides. Bioorg Med Chem 12:4815–4822CrossRefGoogle Scholar
  22. de Ferra F, Rodriguez F, Tortora O, Tosi C, Grandi G (1997) Engineering of peptide synthetases. J Biol Chem 272:25304–25309CrossRefGoogle Scholar
  23. Dieckmann R, Neuhof T, Pavela-Vrancic M, von Dohren H (2001) Dipeptide synthesis by an isolated adenylate-forming domain of non-ribosomal peptide synthetase (NRPS). FEBS Lett 498:42–45CrossRefGoogle Scholar
  24. Doekel S, Marahiel MA (2000) Dipeptide formation on engineered hybrid peptide synthetases. Chem Biol 7:373–384CrossRefGoogle Scholar
  25. Doel MT, Eaton M, Cook EA, Lewis H, Patel T, Carey NH (1980) The expression in E. coli of synthetic repeating polymeric genes coding for poly(L-asapartyl-L-phenylalanine). Nucleic Acids Res 8:4575–4592CrossRefGoogle Scholar
  26. Duerfahrt T, Doekel S, Sonke T, Quaedflieg PJLM, Marahiel MA (2003) Construction of hybrid peptide synthetases for the production of α-L-aspartyl-L-phenylalanine, a precursor for the high-intensity sweetener aspartame. Eur J Biochem 270:4555–4563CrossRefGoogle Scholar
  27. Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–487CrossRefGoogle Scholar
  28. Francois P, Francis D, Pierre M (1990) Enzyme, its method of production and its application to the preparation of methyl N-(L-aspartyl-1) L-phenylananinate. US Patent no. US 4,916,062Google Scholar
  29. Furst P (2001) New developments in glutamine delivery. J. Nutr 131(9 suppl):2562S–2568SGoogle Scholar
  30. Furst P, Pfaender P, Werner F (1985) Glutaminhaltige Aminosaure-Zubereltungen. EP Patent no. EP 0087750Google Scholar
  31. Furst P, Pogan K, Stehle P (1997) Glutamine dipeptides in clinical nutrition. Nutrition 13:731–737CrossRefGoogle Scholar
  32. Galperin MY, Koonin EV (1997) A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Protein Sci 6:2639–2643Google Scholar
  33. Goeters C, Wenn A, Mertes N, Wempe C, Van Aken H, Stehle P, Bone H-G (2002) Parenteral L-alanyl-L-glutamine improves 6-month outcome in critically ill patients. Crit Care Med 30:2032–2037CrossRefGoogle Scholar
  34. Gulewitsch W, Amiradzibi S (1900) Ueber das Carnosin, eine neue organishe Base des Fleishextractes. Ber Deutsch Chem Ges 33:1902–1903CrossRefGoogle Scholar
  35. Guiotto A, Calderan A, Ruzza P, Borin G (2005) Carnosine and carnosine-related antioxidants: a review. Curr Med Chem 12:2293–2315CrossRefGoogle Scholar
  36. Hashimoto S (2006) Occurrence, biosynthesis, and biotechnological production of dipeptides. Microbiol Monogr 5:327–348CrossRefGoogle Scholar
  37. Henriques V, Gjaldbak IK (1911) Untersuchungen uber die Plasteinbildung. Z Physiol Chem 71:485–517Google Scholar
  38. Hill JB, Gelman Y, Dryden, Jr HL, Erickson R, Hsu K, Johnson MR (1991) One-pot process for the preparation of α-L-aspartyl-L-phenylalanine methyl ester hydrochloride. US Patent no. US 5,053,532Google Scholar
  39. Hines HM, Sutfin DC (1956) Physiologic properties of anserine and carnosine. Am J Physiol 186:286–288Google Scholar
  40. Ikeda H, Yagasaki M, Hashimoto S (2006) Methods for manufacturing dipeptides or their derivatives. WO Patent application no. 2006/001382Google Scholar
  41. Inouye K, Kusano M, Hashida Y, Minoda M, Yasukawa K (2007) Engineering, expression, purification, and production of recombinant thermolysin. Biotechnol Annu Rev 13:43–64CrossRefGoogle Scholar
  42. Isowa Y, Ohmori M, Ichikawa T, Mori K, Nonaka Y, Kihara K, Oyama K, Satoh H, Nishimura S (1979) The thermolysi-catalyzed condensation reactions of n-substituted aspartic and glutamic acids with phenylalanine alkyl esters. Tetrahedron Lett 20:2611–2612CrossRefGoogle Scholar
  43. Katsoyannis PG, Ginos JZ (1969) Chemical synthesis of peptides. Annu Rev Biochem 38:881–912CrossRefGoogle Scholar
  44. Kayser H, Meisel H (1996) Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins. FEBS Lett 383:18–20CrossRefGoogle Scholar
  45. Keller U, Schauwecker F (2003) Combinatorial biosynthesis of non-ribosomal peptides. Comb Chem High Throug Scre 6:527–540Google Scholar
  46. Khavinson VK, Anisimov VN (2000) Synthetic dipeptide vilon (L-Lys-L-Glu) increases life span and inhibits a development of spontaneous tumors in mice. Doklady Akad Nauk 372:421–423Google Scholar
  47. Kino K, Nakazawa Y, Yagasaki M (2006) Method for producing dipeptide. WO Patent application no. 2006/101023Google Scholar
  48. Kino K, Nakazawa Y, Yagasaki M (2007) Method for production of dipeptide. WO Patent application no. 2007/074858Google Scholar
  49. Kino K, Kotanaka Y, Yagasaki M (2008) Method for production of dipeptide. WO Patent application no. 2008/038613Google Scholar
  50. Kitts DD, Weiler K (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Design 9:1309–1323CrossRefGoogle Scholar
  51. Kumar D, Bhalla TC (2005) Microbial proteases in peptide synthesis: approaches and applications. Appl Microbiol Biotechnol 68:726–736CrossRefGoogle Scholar
  52. Linne U, Marahiel MA (2004) Reactions catalyzed by mature and recombinant nonribosomal peptide synthetases. Methods in Enzymol 388:293–315CrossRefGoogle Scholar
  53. Lombard C, Saulnier J, Wallach JM (2005) Recent trends in protease-catalyzed peptide synthesis. Protein Peptide Lett 12:621–629CrossRefGoogle Scholar
  54. Matsufuji H, Matsui T, Seki E, Osajima K, Nakashima M, Osajima Y (1994) Angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle. Biosci Biotech Biochem 58:2244–2245Google Scholar
  55. Meister A (1974) Glutathione synthesis. The Enzyme 10:671–697Google Scholar
  56. Mootz HD, Kessler N, Linne U, Eppelmann K, Schwarzer D, Marahiel MA (2002) Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. J Am Chem Soc 124:10980–10981CrossRefGoogle Scholar
  57. Morihara K (1987) Using proteases in peptide synthesis. TIBTECH 5:164–170Google Scholar
  58. Nakanishi K, Kamikubo T, Matsuno R (1985) Continuous synthesis of N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester with immobilized thermolysin in an organic solvent. Bio/Technol 3:459–464CrossRefGoogle Scholar
  59. Nakanishi K, Takeuchi A, Matsuno R (1990) Long-term continuous synthesis of aspartame precursor in a column reactor with an immobilized thermolysin. Appl Microbiol Biotechnol 32:633–636CrossRefGoogle Scholar
  60. Nilsson BL, Soellner MB, Raines RT (2005) Chemical synthesis of proteins. Annu Rev Biophys Biomol Struct 34:91–118CrossRefGoogle Scholar
  61. Nitta A, Nishioka H, Fukumitsu H, Furukawa Y, Sugiura H, Shen L, Furukawa S (2004) Hydrophobic dipeptide Leu-Ile protects against neuronal death by inducing brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor synthesis. J Neurosci Res 78:250–258CrossRefGoogle Scholar
  62. Oyama K, Irino S, Hagi N (1987) Production of aspartame by immobilized thermoase. Methods in Enzymol 136:503–516CrossRefGoogle Scholar
  63. Rausch C, Weber T, Kohlbacher O, Wohleben W, Huson DH (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33:5799–5808CrossRefGoogle Scholar
  64. Roth E, Ollenschlager G, Hamilton G, Simmel A, Langer K, Fekl W, Jakesz R (1988) Influence of two glutamine-containing dipeptides on growth of mammalian cells. In Vitro Cell Dev Biol 24:696–698CrossRefGoogle Scholar
  65. Sano T, Sugaya T, Inoue K, Mizutani S, Ono Y, Kasai M (2000) Process research and development of L-alanyl-L-glutamine, a component of parenteral nutrition. Org Process Res Dev 4:147–152CrossRefGoogle Scholar
  66. Sato M, Hosokawa T, Yamaguchi T, Nakano T, Muramoto K, Kahara T, Funayama K, Kobayashi A, Nakano T (2002) Angiotensin I-converting enzyme inhibitory peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats. J Agric Food Chem 50:6245–6252CrossRefGoogle Scholar
  67. Schellenberger V, Jakubke HD (1991) Protease-catalyzed kinetically controlled peptide synthesis. Angew Chem Int Ed Engl 30:1437–1449CrossRefGoogle Scholar
  68. Schiffman SS (1976) Taste of dipeptides. Physiol Behavior 17:523–535CrossRefGoogle Scholar
  69. Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105:715–738CrossRefGoogle Scholar
  70. Sinisterra JV, Alcantara AR (1993) Synthesis of peptides catalyzed by enzymes: a practical overview. J Mol Catalysis 84:327–364CrossRefGoogle Scholar
  71. Stachelhaus T, Schneider A, Marahiel MA (1995) Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269:69–72CrossRefGoogle Scholar
  72. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505CrossRefGoogle Scholar
  73. Stehle P, Pfaender P, Furst P (1984) Isotachophoretic analysis of a synthetic dipeptide L-alanyl-L-glutamine. Evidence for stability during heat sterilization. J Chromatogr 294:507–512CrossRefGoogle Scholar
  74. Suzuki T, Hirano T, Suyama M (1987) Free imidazole compounds in white and dark muscles of migratory marine fish. Comp Biochem Physiol B 87:615–619CrossRefGoogle Scholar
  75. Symmank H, Franke P, Saenger W, Bernhard F (2002) Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein Engine 15:913–921CrossRefGoogle Scholar
  76. Tabata K, Hashimoto S (2005) Microorganisms producing dipeptides and process for producing dipeptides using the microorganisms. WO Patent application no. 2005/045006Google Scholar
  77. Tabata K, Hashimoto S (2007) Fermentative production of L-alanyl-L-glutamine by a metabolically engineered Escherichia coli strain expressing L-amino acid α-ligase. Appl Environ Microbiol 73:6378–6385CrossRefGoogle Scholar
  78. Tabata K, Ikeda H, Hashimoto S (2005) ywfE in Bacillus subtilis codes for a novel enzyme, L-amino acid ligase. J Bacteriol 187:5195–5202CrossRefGoogle Scholar
  79. Takagi H, Shimoi H, Ueda H, Amano H (1979) Morphine-like analgesia by a new dipeptide, L-tyrosyl-L-arginine (kyotorphin) and its analogue. Eur J Pharmacol 55:109–111CrossRefGoogle Scholar
  80. Walsh CT (1989) Enzymes in the D-alanine branch of bacterial cell wall peptidoglycan assembly. J Biol Chem 264:2393–2396Google Scholar
  81. Ye L, Ramstrom O, Ansell RJ, Masson M-O, Masbach K (1999) Use of molecularly imprinted polymers in a biotransformation process. Biotechnol Bioengi 64:650–655CrossRefGoogle Scholar
  82. Yokoyama K, Chiba H, Yoshikawa M (1992) Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito. Biosci Biotechnol Biochem 56:1541–1545CrossRefGoogle Scholar
  83. Yokozeki K, Hara S (2005) A novel and efficient enzymatic method for the production of peptides from unprotected starting materials. J Biotechnol 115:211–220CrossRefGoogle Scholar
  84. Yukawa T, Kawasaki T, Nakamura M, Yamashita T, Tuji T (1994) JP Patent application JP Patent no. JP 06/80075Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Technical Research Laboratories of Kyowa Hakko Kogyo Co., Ltd.HofuJapan

Personalised recommendations