Applied Microbiology and Biotechnology

, Volume 80, Issue 4, pp 579–587 | Cite as

Production of the aroma chemicals 3-(methylthio)-1-propanol and 3-(methylthio)-propylacetate with yeasts

  • M. M. W. Etschmann
  • P. Kötter
  • J. Hauf
  • W. Bluemke
  • K.-D. Entian
  • J. Schrader
Biotechnological Products and Process Engineering

Abstract

Yeasts can convert amino acids to flavor alcohols following the Ehrlich pathway, a reaction sequence comprising transamination, decarboxylation, and reduction. The alcohols can be further derivatized to the acetate esters by alcohol acetyl transferase. Using l-methionine as sole nitrogen source and at high concentration, 3-(methylthio)-1-propanol (methionol) and 3-(methylthio)-propylacetate (3-MTPA) were produced with Saccharomyces cerevisiae. Methionol and 3-MTPA acted growth inhibiting at concentrations of >5 and >2 g L−1, respectively. With the wild type strain S. cerevisiae CEN.PK113-7D, 3.5 g L−1 methionol and trace amounts of 3-MTPA were achieved in a bioreactor. Overexpression of the alcohol acetyl transferase gene ATF1 under the control of a TDH3 (glyceraldehyde-3-phosphate dehydrogenase) promoter together with an optimization of the glucose feeding regime led to product concentrations of 2.2 g L−1 3-MTPA plus 2.5 g L−1 methionol. These are the highest concentrations reported up to now for the biocatalytic synthesis of these flavor compounds which are applied in the production of savory aroma compositions such as meat, potato, and cheese flavorings.

References

  1. Aoki T, Uchida K (1991) Enhanced formation of 3-(methylthio-)-1-propanol in a salt-tolerant yeast, Zygosaccharomyces rouxii, due to deficiency of S-adenosylmethionine synthase. Agric Biol Chem 55:2113–2116Google Scholar
  2. Arctander S (1969) Perfume and flavor chemicals. Aroma chemicals. Published by the author, Montclair, USAGoogle Scholar
  3. Arfi K, Landaud S, Bonnarme P (2006) Evidence for distinct L-methionine catabolic pathways in the yeast Geotrichum candidum and the bacterium Brevibacterium linens. Appl Environ Microbiol 72:2155–62CrossRefGoogle Scholar
  4. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1989) Current protocols in molecular biology. Wiley, New YorkGoogle Scholar
  5. Ballance PE (1961) Production of volatile compounds related to the flavour of foods from the Strecker degradation of DL-methionine. J Sci Food Agric 12:532–536CrossRefGoogle Scholar
  6. Berry DR, Brown C (1987) Physiology of yeast growth. In: Berry DR, Russel I, Steward GG (eds) Yeast biotechnology. Allen and Unwin, London, pp 159–199Google Scholar
  7. Bonnarme P, Psoni L, Spinnler HE (2000) Diversity of L-methionine catabolism pathways in cheese-ripening bacteria. Appl Environ Microbiol 66:5514–7CrossRefGoogle Scholar
  8. Burdock GA (2004) Fenaroli’s handbook of flavor ingredients. CRC, Boca Raton, p 1320Google Scholar
  9. Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJ (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272:26871–8CrossRefGoogle Scholar
  10. Dickinson JR, Harrison SJ, Hewlins MJ (1998) An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem 273:25751–6CrossRefGoogle Scholar
  11. Dickinson JR, Harrison SJ, Dickinson JA, Hewlins MJ (2000) An investigation of the metabolism of isoleucine to active Amyl alcohol in Saccharomyces cerevisiae. J Biol Chem 275:10937–42CrossRefGoogle Scholar
  12. Dickinson JR, Salgado LE, Hewlins MJ (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278:8028–34CrossRefGoogle Scholar
  13. van Dijken JP, Bauer J, Brambilla L, Duboc P, Francois JM, Gancedo C, Giuseppin ML, Heijnen JJ, Hoare M, Lange HC, Madden EA, Niederberger P, Nielsen J, Parrou JL, Petit T, Porro D, Reuss M, van Riel N, Rizzi M, Steensma HY, Verrips CT, Vindelov J, Pronk JT (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26:706–714CrossRefGoogle Scholar
  14. Entian K-D, Kötter P (2007) 25 Yeast genetic strain and plasmid collections. Meth Microbiol 36:629–666CrossRefGoogle Scholar
  15. Etschmann MMW, Sell D, Schrader J (2003) Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotech Lett 25:531–536CrossRefGoogle Scholar
  16. Etschmann MMW, Sell D, Schrader J (2004) Medium optimization for the production of the aroma compound 2-phenylethanol using a genetic algorithm. J Mol Catal B 29:187–193CrossRefGoogle Scholar
  17. Etschmann MM, Sell D, Schrader J (2005) Production of 2-phenylethanol and 2-phenylethylacetate from L-phenylalanine by coupling whole-cell biocatalysis with organophilic pervaporation. Biotechnol Bioeng 92:624–634CrossRefGoogle Scholar
  18. Etschmann MM, Schrader J (2006) An aqueous-organic two-phase bioprocess for efficient production of the natural aroma chemicals 2-phenylethanol and 2-phenylethylacetate with yeast. Appl Microbiol Biotechnol 71:440–443CrossRefGoogle Scholar
  19. Gijs L, Perpète P, Timmermans A, Collin S (2000) 3-Methylthiopropionaldehyde as precursor of dimethyl trisulfide in aged beers. J Agric Food Chem 48:6196–6199CrossRefGoogle Scholar
  20. Güldener US, Heck T, Fielder J, Beinhauer, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–24CrossRefGoogle Scholar
  21. Hayashibe M, Katoda S, Owada H, Yoshida H, Katayosa A, Terashima T (1970) Methionine metabolism in yeast. J Ferment Technol 48:22–28Google Scholar
  22. Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–66CrossRefGoogle Scholar
  23. Hirosawa I, Aritomi K, Hoshida H, Kashiwagi S, Nishizawa Y, Akada R (2004) Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocol. Appl Microbiol Biotechnol 65:68–73CrossRefGoogle Scholar
  24. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272CrossRefGoogle Scholar
  25. Kagkli DM, Tache R, Cogan TM, Hill C, Casaregola S, Bonnarme P (2006) Kluyveromyces lactis and Saccharomyces cerevisiae, two potent deacidifying and volatile-sulphur-aroma-producing microorganisms of the cheese ecosystem. Appl Microbiol Biotechnol 73:434–442CrossRefGoogle Scholar
  26. Kumar D, Gomes J (2005) Methionine production by fermentation. Biotechnol Adv 23:41–61CrossRefGoogle Scholar
  27. Landaud S, Helinck S, Bonnarme P (2008) Formation of volatile sulfur compounds and metabolism of methionine and other sulfur compounds in fermented food. Appl Microbiol Biotechnol 77:1191–205CrossRefGoogle Scholar
  28. Lilly M, Lambrechts MG, Pretorius IS (2000) Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol 66:744–753CrossRefGoogle Scholar
  29. Liu SQ, Crow VL (2007) Dairy product and process. WO 2007/136280A1Google Scholar
  30. Lusk JL, Rozan A (2005) Consumer acceptance of biotechnology and the role of second generation technologies in the USA and Europe. Trends Biotechnol 23:386–387CrossRefGoogle Scholar
  31. Moreira N, Mendes F, Hogg T, Vasconcelos I (2005) Alcohols, esters and heavy sulphur compounds production by pure and mixed cultures of apiculate wine yeasts. Int J Food Microbiol 103:285–294CrossRefGoogle Scholar
  32. Mueller DA (2007) Flavours: the legal framework. In: Berger RG (ed) Flavours and fragrances. Chemistry, bioprocessing and sustainability. Springer, Berlin, pp 15–24CrossRefGoogle Scholar
  33. Perpete P, Duthoit O, De Maeyer S, Imray L, Lawton AI, Stavropoulos KE, Gitonga VW, Hewlins MJ, Dickinson JR (2006) Methionine catabolism in Saccharomyces cerevisiae. FEMS Yeast Res 6:48–56CrossRefGoogle Scholar
  34. Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–46CrossRefGoogle Scholar
  35. Schrader J, Etschmann MM, Sell D, Hilmer JM, Rabenhorst J (2004) Applied biocatalysis for the synthesis of natural flavour compounds—current industrial processes and future prospects. Biotechnol Lett 26:463–72CrossRefGoogle Scholar
  36. Schreiber WL, Scharpf LG, Katz I (1997) Future needs of chemistry in flavors and fragrances. Perfumer & Flavorist 22:11–16Google Scholar
  37. Schreier P, Drawert FD, Junker A, Barton H, Leupold G (1976) Über die Biosynthese von Aromastoffen durch Mikroorganismen. Z Lebensm Unters Forsch 162:279–284CrossRefGoogle Scholar
  38. Seward R, Willetts JM, Dinsdale MG, Lloyd D (1996) The effects of ethanol, hexan-1-ol, and 2-phenylethanol on cider yeast growth, viability, and energy status; synergistic inhibition. J Inst Brew 102:439–443Google Scholar
  39. Stark D, Münch T, Sonnleitner B, Marison IW, Stockar von U (2002) Extractive bioconversion of 2-phenylethanol from L-phenylalanine by Saccharomyces cerevisiae. Biotechnol Prog 18:514–523CrossRefGoogle Scholar
  40. Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–808CrossRefGoogle Scholar
  41. Whitehead IM, Ohleyer E (1993) Microbial carboxylic acid production method. WO9308293Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • M. M. W. Etschmann
    • 1
  • P. Kötter
    • 2
  • J. Hauf
    • 3
  • W. Bluemke
    • 4
  • K.-D. Entian
    • 2
  • J. Schrader
    • 1
  1. 1.Biochemical Engineering GroupFrankfurt am MainGermany
  2. 2.Institute of Molecular Biosciences, Molecular Genetics and Cellular MicrobiologyFrankfurt am MainGermany
  3. 3.SRD—Scientific Research and Development GmbHOberurselGermany
  4. 4.Evonik Degussa GmbHHanau-WolfgangGermany

Personalised recommendations