Applied Microbiology and Biotechnology

, Volume 80, Issue 1, pp 99–106 | Cite as

Real-time quantitative analysis of carbon catabolite derepression of cellulolytic genes expressed in the basidiomycete Phanerochaete chrysosporium

  • Hitoshi Suzuki
  • Kiyohiko Igarashi
  • Masahiro Samejima
Applied Genetics and Molecular Biotechnology

Abstract

Production of cellulolytic enzymes, such as cellobiohydrolases (CBH) and cellobiose dehydrogenase (CDH), by the basidiomycete Phanerochaete chrysosporium is significantly repressed in glucose-containing media; this is known as carbon catabolite repression. We have analyzed the glucose concentration dependence of transcript numbers of the cellulolytic genes (cel6A, cel7D, and cdh) and β-glucosidase gene (bgl3A) by means of real-time quantitative reverse transcriptase polymerase chain reaction to investigate the roll of carbon catabolite derepression in these gene expression. When the mycelium of P. chrysosporium grown in glucose culture was transferred to media containing various concentrations of glucose (0–5,000 μM), the expression levels of cel6A, cel7D, and cdh were drastically influenced by glucose, whereas no significant change was observed in bgl3A. The numbers of transcripts of cel6A, cel7D, and cdh increased exponentially during incubation for 6 h in the culture without glucose, and the rates of increase were 2.1 times per hour for cel6A transcripts and 2.7 times per hour for cel7D transcripts. Moreover, derepression of cel6A and cel7D was delayed (by 1.6 and 0.6 h, respectively) when the culture contained 50 μM glucose compared with that in the absence of glucose, suggesting that the promoter activities of cel7D and cel6A are distinct under conditions of carbon catabolite derepression.

Keywords

Carbon catabolite derepression Phanerochaete chrysosporium Cellulose degradation Real-time PCR 

References

  1. Aro N, Pakula T, Penttila M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739CrossRefGoogle Scholar
  2. Ayers AR, Ayers SB, Eriksson KE (1978) Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur J Biochem 90:171–181CrossRefGoogle Scholar
  3. Bao W, Usha SN, Renganathan V (1993) Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 300:705–713CrossRefGoogle Scholar
  4. Broda P, Birch PR, Brooks PR, Sims PF (1995) PCR-mediated analysis of lignocellulolytic gene transcription by Phanerochaete chrysosporium: substrate-dependent differential expression within gene families. Appl Environ Microbiol 61:2358–2364Google Scholar
  5. Canevascini G, Coudray M-R, Rey J-P, Southgate RJG, Meier H (1979) Induction and catabolite repression of cellulase synthesis in the thermophilic fungus Sporotrichum thermophile. J Gen Microbiol 110:291–303Google Scholar
  6. Covert SF, Vanden Wymelenberg A, Cullen D (1992) Structure, organization, and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium. Appl Environ Microbiol 58:2168–2175Google Scholar
  7. Cubero B, Scazzocchio C (1994) Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J 13:407–415Google Scholar
  8. Deshpande V, Eriksson KE, Pettersson B (1978) Production, purification and partial characterization of 1,4-beta-glucosidase enzymes from Sporotrichum pulverulentum. Eur J Biochem 90:191–198CrossRefGoogle Scholar
  9. Dowzer CE, Kelly JM (1989) Cloning of the creA gene from Aspergillus nidulans: a gene involved in carbon catabolite repression. Curr Genet 15:457–459CrossRefGoogle Scholar
  10. Dowzer CE, Kelly JM (1991) Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11:5701–5709Google Scholar
  11. Eberhart BM, Beck RS, Goolsby KM (1977) Cellulase of Neurospora crassa. J Bacteriol 130:181–186Google Scholar
  12. Eriksson KE (1978) Enzyme mechanisms involved in cellulose hydrolysis by the rot fungus Sporotrichum pulverulentum. Biotechnol Bioeng 20:317–332CrossRefGoogle Scholar
  13. Henriksson G, Sild V, Szabo IJ, Pettersson G, Johansson G (1998) Substrate specificity of cellobiose dehydrogenase from Phanerochaete chrysosporium. Biochim Biophys Acta 1383:48–54Google Scholar
  14. Igarashi K, Tani T, Kawai R, Samejima M (2003) Family 3 beta-glucosidase from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium is a glucan 1,3-beta-glucosidase. J Biosci Bioeng 95:572–576Google Scholar
  15. Ilmen M, Thrane C, Penttila M (1996a) The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet 251:451–460Google Scholar
  16. Ilmen M, Onnela ML, Klemsdal S, Keranen S, Penttila M (1996b) Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei. Mol Gen Genet 253:303–314Google Scholar
  17. Ilmen M, Saloheimo A, Onnela ML, Penttila ME (1997) Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol 63:1298–1306Google Scholar
  18. Johnsrud SC, Eriksson KE (1985) Cross-breeding of selected and mutated homokaryotic strains of Phanerochaete chrysosporium K-3—new cellulase deficient strains with increased ability to degrade lignin. Appl Microbiol Biotechnol 21:320–327CrossRefGoogle Scholar
  19. Kremer SM, Wood PM (1992) Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome b2. Eur J Biochem 205:133–138CrossRefGoogle Scholar
  20. Kurasawa T, Yachi M, Suto M, Kamagata Y, Takao S, Tomita F (1992) Induction of cellulase by gentiobiose and its sulfur-containing analog in Penicillium purpurogenum. Appl Environ Microbiol 58:106–110Google Scholar
  21. Lamar RT, Schoenike B, Vanden Wymelenberg A, Stewart P, Dietrich DM, Cullen D (1995) Quantitation of fungal mRNAs in complex substrates by reverse transcription PCR and its application to Phanerochaete chrysosporium-colonized soil. Appl Environ Microbiol 61:2122–2126Google Scholar
  22. Li B, Nagalla SR, Renganathan V (1996) Cloning of a cDNA encoding cellobiose dehydrogenase, a hemoflavoenzyme from Phanerochaete chrysosporium. Appl Environ Microbiol 62:1329–1335Google Scholar
  23. Lymar ES, Li B, Renganathan V (1995) Purification and characterization of a cellulose-binding (beta)-glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 61:2976–2980Google Scholar
  24. Mandels M, Parrish FW, Reese ET (1962) Sophorose as an inducer of cellulase in Trichoderma viride. J Bacteriol 83:400–408Google Scholar
  25. Meijer MM, Boonstra J, Verkleij AJ, Verrips CT (1998) Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux. J Biol Chem 273:24102–24107CrossRefGoogle Scholar
  26. Ohnishi Y, Nagase M, Ichiyanagi T, Kitamoto Y, Aimi T (2007) Transcriptional regulation of two cellobiohydrolase encoding genes (cel1 and cel2) from the wood-degrading basidiomycete Polyporus arcularius. Appl Microbiol Biotechnol 76:1069–78CrossRefGoogle Scholar
  27. Rho D, Desrochers M, Jurasek L, Driguez H, Defaye J (1982) Induction of cellulose in Schizophyllum commune: thiocellobiose as a new inducer. J Bacteriol 149:47–53Google Scholar
  28. Schmoll M, Kubicek CP (2003) Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus. A review. Acta Microbiol Immunol Hung 50:125–145CrossRefGoogle Scholar
  29. Seiboth B, Hakola S, Mach RL, Suominen PL, Kubicek CP (1997) Role of four major cellulases in triggering of cellulase gene expression by cellulose in Trichoderma reesei. J Bacteriol 179:5318–5320Google Scholar
  30. Sims P, James C, Broda P (1988) The identification, molecular cloning and characterisation of a gene from Phanerochaete chrysosporium that shows strong homology to the exo-cellobiohydrolase I gene from Trichoderma reesei. Gene 74:411–422CrossRefGoogle Scholar
  31. Sims PF, Soares-Felipe MS, Wang Q, Gent ME, Tempelaars C, Broda P (1994) Differential expression of multiple exo-cellobiohydrolase I-like genes in the lignin-degrading fungus Phanerochaete chrysosporium. Mol Microbiol 12:209–216CrossRefGoogle Scholar
  32. Smith MH, Gold MH (1979) Phanerochaete chrysosporium beta-glucosidases: Induction, cellular localization, and physical characterization. Appl Environ Microbiol 37:938–942Google Scholar
  33. Stapleton PC, Dobson AD (2003) Carbon repression of cellobiose dehydrogenase production in the white rot fungus Trametes versicolor is mediated at the level of gene transcription. FEMS Microbiol Lett 221:167–172CrossRefGoogle Scholar
  34. Strauss J, Mach RL, Zeilinger S, Hartler G, Stoffler G, Wolschek M, Kubicek CP (1995) Cre1, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett 376:103–107CrossRefGoogle Scholar
  35. Streamer M, Eriksson KE, Pettersson B (1975) Extracellular enzyme-system utilized by fungus Sporotrichum-Pulverulentum (Chrysosporium-Lignorum) for breakdown of cellulose - Functional characterization of 5 endo-1,4-beta-glucanases and one exo-1,4-beta-glucanase. Eur J Biochem 59:607–613CrossRefGoogle Scholar
  36. Takashima S, Iikura H, Nakamura A, Masaki H, Uozumi T (1996) Analysis of Cre1 binding sites in the Trichoderma reesei cbh1 upstream region. FEMS Microbiol Lett 145:361–366CrossRefGoogle Scholar
  37. Tempelaars CA, Birch PR, Sims PF, Broda P (1994) Isolation, characterization, and analysis of the expression of the cbhII gene of Phanerochaete chrysosporium. Appl Environ Microbiol 60:4387–4393Google Scholar
  38. Uzcategui E, Ruiz A, Montesino R, Johansson G, Pettersson G (1991) The 1,4-beta-D-glucan cellobiohydrolases from Phanerochaete-Chrysosporium. 1. A system of synergistically acting enzymes homologous to Trichoderma-Reesei. J Biotechnol 19:271–285CrossRefGoogle Scholar
  39. Vallim MA, Janse BJ, Gaskell J, Pizzirani-Kleiner AA, Cullen D (1998) Phanerochaete chrysosporium cellobiohydrolase and cellobiose dehydrogenase transcripts in wood. Appl Environ Microbiol 64:1924–1928Google Scholar
  40. Vanden Wymelenberg A, Covert SF, Cullen D (1993) Identification of the gene encoding the major cellobiohydrolase of the white rot fungus Phanerochaete chrysosporium. Appl Envir Microbiol 59:3492–3494Google Scholar
  41. Vanden Wymelenberg A, Minges P, Sabat G et al (2006) Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet Biol 43:343–356CrossRefGoogle Scholar
  42. Yoshida M, Igarashi K, Kawai R, Aida K, Samejima M (2004) Differential transcription of beta-glucosidase and cellobiose dehydrogenase genes in cellulose degradation by the basidiomycete Phanerochaete chrysosporium. FEMS Microbiol Lett 235:177–182Google Scholar
  43. Zeilinger S, Schmoll M, Pail M, Mach RL, Kubicek CP (2003) Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Mol Genet Genomics 270:46–55CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Hitoshi Suzuki
    • 1
  • Kiyohiko Igarashi
    • 1
  • Masahiro Samejima
    • 1
  1. 1.Department of Biomaterials Sciences, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations