Advertisement

Applied Microbiology and Biotechnology

, Volume 79, Issue 6, pp 901–913 | Cite as

Minimizing losses in bio-electrochemical systems: the road to applications

  • Peter Clauwaert
  • Peter Aelterman
  • The Hai Pham
  • Liesje De Schamphelaire
  • Marta Carballa
  • Korneel Rabaey
  • Willy Verstraete
Mini-Review

Abstract

Bio-electrochemical systems (BESs) enable microbial catalysis of electrochemical reactions. Plain electrical power production combined with wastewater treatment by microbial fuel cells (MFCs) has been the primary application purpose for BESs. However, large-scale power production and a high chemical oxygen demand conversion rates must be achieved at a benchmark cost to make MFCs economical competitive in this context. Recently, a number of valuable oxidation or reduction reactions demonstrating the versatility of BESs have been described. Indeed, BESs can produce hydrogen, bring about denitrification, or reductive dehalogenation. Moreover, BESs also appear to be promising in the field of online biosensors. To effectively apply BESs in practice, both biological and electrochemical losses need to be further minimized. At present, the costs of reactor materials have to be decreased, and the volumetric biocatalyst activity in the systems has to be increased substantially. Furthermore, both the ohmic cell resistance and the pH gradients need to be minimized. In this review, these losses and constraints are discussed from an electrochemical viewpoint. Finally, an overview of potential applications and innovative research lines is given for BESs.

Keywords

Biofuel cell Bioenergy Biocatalyzed electrolysis Overpotentials Biocatalysts Ohmic resistance 

Notes

Acknowledgments

The useful comments of Nico Boon are kindly acknowledged. This research was funded by a PhD grant (IWT grant 53305) of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen), a postdoctoral grant (EX2006-0963) from the Spanish Ministry of Education and Science and the Flanders Research Foundation (FWO project G.0172.05).

References

  1. Aelterman P, Rabaey K, Clauwaert P, Verstraete W (2006a) Microbial fuel cells for wastewater treatment. Water Sci Technol 54:9–15Google Scholar
  2. Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006b) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394CrossRefGoogle Scholar
  3. Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K (2008a) The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol 78:409–418CrossRefGoogle Scholar
  4. Aelterman P, Rabaey K, De Schamphelaire L, Clauwaert P, Boon N, Verstraete W (2008b) Microbial fuel cells as an engineered ecosystem. In: Wall J, Harwood CS, Demain AL (eds) Bioenergy. ASM, Washington, DC, USA, pp 307–320Google Scholar
  5. Allen RM, Bennetto HP (1993) Microbial fuel-cells-electricity production from carbohydrates. Appl Biochem Biotechnol 39:27–40CrossRefGoogle Scholar
  6. Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41:2554–2559CrossRefGoogle Scholar
  7. Back JH, Kim MS, Cho H, Chang IS, Lee JY, Kim KS, Kim BH, Park YI, Han YS (2004) Construction of bacterial artificial chromosome library from electrochemical microorganisms. FEMS Microbiol Lett 238:65–70CrossRefGoogle Scholar
  8. Bergel A, Feron D, Mollica A (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7:900–904CrossRefGoogle Scholar
  9. Blake RC, Howard GT, McGinness S (1994) Enhanced yields of iron-oxidizing bacteria by in-situ electrochemical reduction of soluble iron in the growth-medium. Appl Environ Microbiol 60:2704–2710Google Scholar
  10. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555CrossRefGoogle Scholar
  11. Cheng S, Logan BE (2007a) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496CrossRefGoogle Scholar
  12. Cheng S, Logan BE (2007b) Sustainable and efficient biohydrogen production via electrohydrogenesis. PNAS 104:18871–18873CrossRefGoogle Scholar
  13. Cheng S, Liu H, Logan BE (2006) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369CrossRefGoogle Scholar
  14. Clauwaert P, Rabaey K, Aelterman P, DeSchamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007a) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360CrossRefGoogle Scholar
  15. Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007b) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569CrossRefGoogle Scholar
  16. Clauwaert P, Tolêdo R, Van der Ha D, Crab R, Verstraete W, Hu H, Udert KM, Rabaey K (2008) Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci Technol 57:575–579CrossRefGoogle Scholar
  17. De Schamphelaire L, Van den Bossche K, Dang HS, Hofte M, Boon N, Rabaey K, Verstraete W (2008) Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol 42:3053–3058CrossRefGoogle Scholar
  18. De Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7:314–325CrossRefGoogle Scholar
  19. Du ZW, Li HR, Gu TY (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482CrossRefGoogle Scholar
  20. Freguia S, Rabaey K, Yuan Z, Keller J (2007) Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim Acta 53:598–603CrossRefGoogle Scholar
  21. Freguia S, Rabaey K, Yuan ZG, Keller J (2008) Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res 42:1387–1396Google Scholar
  22. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363CrossRefGoogle Scholar
  23. Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6:596–604CrossRefGoogle Scholar
  24. Hammes F, Berney M, Wang YY, Vital M, Koster O, Egli T (2008) Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Res 42:269–277CrossRefGoogle Scholar
  25. Harnisch F, Schröder U, Scholz F (2008) The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells. Environ Sci Technol 42:1740–1746CrossRefGoogle Scholar
  26. He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009–2015CrossRefGoogle Scholar
  27. He Z, Wagner N, Minteer SD, Angenent LT (2006) An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 41:5212–5217CrossRefGoogle Scholar
  28. Kim J, Kang B (2008) DBPs removal in GAC filter-adsorber. Water Res 42:145–152CrossRefGoogle Scholar
  29. Kim BH, Chang IS, Gil GC, Park HS, Kim HJ (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541–545CrossRefGoogle Scholar
  30. Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung NT (2004) Enrichment of microbial community generating electricity using a fuel cell type electrochemical cell. Appl Microbiol Biotechnol 63:672–681CrossRefGoogle Scholar
  31. Kim GT, Webster G, Wimpenny JWT, Kim BH, Kim HJ, Weightman AJ (2006) Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microbiol 101:698–710CrossRefGoogle Scholar
  32. Lee JY, Phung NT, Chang IS, Kim BH, Sung HC (2003) Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol Lett 223:185–191CrossRefGoogle Scholar
  33. Liang P, Huang X, Fan MZ, Cao XX, Wang C (2007) Composition and distribution of internal resistance in three types of microbial fuel cells. Appl Microbiol Biotechnol 77:551–558CrossRefGoogle Scholar
  34. Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046CrossRefGoogle Scholar
  35. Liu H, Cheng SA, Logan BE (2005a) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39:5488–5493CrossRefGoogle Scholar
  36. Liu H, Grot S, Logan BE (2005b) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320CrossRefGoogle Scholar
  37. Logan BE, Murano C, Scott K, Gray ND, Head IM (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 39:942–952CrossRefGoogle Scholar
  38. Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRefGoogle Scholar
  39. Logan BE, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346CrossRefGoogle Scholar
  40. Niessen J, Schroder U, Rosenbaum M, Scholz F (2004) Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun 6:571–575CrossRefGoogle Scholar
  41. Oh SE, Logan BE (2007) Voltage reversal during microbial fuel cell stack operation. J Power Sources 167:11–17CrossRefGoogle Scholar
  42. Orfei LH, Simison S, Busalmen JP (2006) Stainless steels can be cathodically protected using energy stored at the marine sediment/seawater interface. Environ Sci Technol 40:6473–6478CrossRefGoogle Scholar
  43. Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65:2912–2917Google Scholar
  44. Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6:285–292CrossRefGoogle Scholar
  45. Pham TH, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Hofte M, Verstraete W, Rabaey K (2008) Metabolites produced by Pseudomonas sp enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77:1119–1129CrossRefGoogle Scholar
  46. Phung NT, Lee J, Kang KH, Chang IS, Gadd GM, Kim BH (2004) Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol Lett 233:77–82CrossRefGoogle Scholar
  47. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298CrossRefGoogle Scholar
  48. Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25:1531–1535CrossRefGoogle Scholar
  49. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382CrossRefGoogle Scholar
  50. Rabaey K, Boon N, Hofte M, Verstraete W (2005a) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408CrossRefGoogle Scholar
  51. Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005b) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082CrossRefGoogle Scholar
  52. Rabaey K, Vandesompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Pham HT, Vermeulen J, Verhaege M, Lens P, Verstraete W (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40:5218–5224CrossRefGoogle Scholar
  53. Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1:9–18CrossRefGoogle Scholar
  54. Rabaey K, Read S, Clauwaert P, Freguia S, Bond PL, Blackall LL, Keller J (2008) Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J 2:519–527.Google Scholar
  55. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101CrossRefGoogle Scholar
  56. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348CrossRefGoogle Scholar
  57. Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671CrossRefGoogle Scholar
  58. Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, New York, USA, pp 434–437Google Scholar
  59. Rosenbaum M, Schroder U, Scholz F (2006) Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions. J Solid State Electrochem 10:872–878CrossRefGoogle Scholar
  60. Rozendal RA, Hamelers HVM, Buisman CJN (2006a) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211CrossRefGoogle Scholar
  61. Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006b) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy 31:1632–1640CrossRefGoogle Scholar
  62. Rozendal R, Sleutels THJA, Hamelers HVM, Buisman CJN (2007a) Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater. In: Proceedings of the 11th IWA World Congress on Anaerobic Digestion: Bioenergy for Our Future. PP3A.3, IWA, Brisbane, AustraliaGoogle Scholar
  63. Rozendal RA, Hamelers HVM, Molenkmp RJ, Buisman JN (2007b) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41:1984–1994CrossRefGoogle Scholar
  64. Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634CrossRefGoogle Scholar
  65. Schroder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629CrossRefGoogle Scholar
  66. Serway RA, Beichner RJ (2000) Physics for scientists and engineers with modern physics. Saunders College Publishing, Philadelphia, USA, pp 846–848Google Scholar
  67. Shantaram A, Beyenal H, Raajan R, Veluchamy A, Lewandowski Z (2005) Wireless sensors powered by microbial fuel cells. Environ Sci Technol 39:5037–5042CrossRefGoogle Scholar
  68. Shin SH, Choi YJ, Na SH, Jung SH, Kim S (2006) Development of bipolar plate stack type microbial fuel cells. Bull Korean Chem Soc 27:281–285CrossRefGoogle Scholar
  69. Ter Heijne A, Hamelers HVM, Buisman CJN (2007) Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environ Sci Technol 41:4130–4134CrossRefGoogle Scholar
  70. Terheijne A, Hamelers HVM, De Wilde V, Rozendal RA, Buisman CJN (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ Sci Technol 40:5200–5205CrossRefGoogle Scholar
  71. Thrash JC, Van Trump JI, Weber KA, Miller E, Achenbach LA, Coates JD (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41:1740–1746CrossRefGoogle Scholar
  72. van Loosdrecht MCM, Heijnen JJ, Eberl H, Kreft J, Picioreanu C (2002) Mathematical modelling of biofilm structures. Antonie Van Leeuwenhoek Int J Gen Molec Microbiol 81:245–256CrossRefGoogle Scholar
  73. Verstraete W, van Vaerenbergh E (1986) Aerobic activated sludge. In: Rehm HJ, Reed G (eds) Biotechnology, vol. 8. VCH, Weinheim, Germany, pp 43–112Google Scholar
  74. Yu EH, Chang K, Scott K, Logan BE (2007) Microbial fuel cell performance with non-Pt cathode catalysts. J Power Sources 171:275–281CrossRefGoogle Scholar
  75. Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410CrossRefGoogle Scholar
  76. Zhao F, Harnisch F, Schrorder U, Scholz F, Bogdanoff P, Herrmann I (2006) Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol 40:5193–5199CrossRefGoogle Scholar
  77. Zuo Y, Cheng S, Call D, Logan BE (2007) Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environ Sci Technol 41:3347–3353CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Peter Clauwaert
    • 1
  • Peter Aelterman
    • 1
  • The Hai Pham
    • 1
  • Liesje De Schamphelaire
    • 1
  • Marta Carballa
    • 1
  • Korneel Rabaey
    • 2
  • Willy Verstraete
    • 1
  1. 1.Laboratory of Microbial Ecology and Technology (LabMET)Ghent UniversityGhentBelgium
  2. 2.Advanced Water Management CentreUniversity of QueenslandBrisbaneAustralia

Personalised recommendations