Applied Microbiology and Biotechnology

, Volume 79, Issue 5, pp 707–718 | Cite as

CO2 bio-mitigation using microalgae

  • Bei Wang
  • Yanqun Li
  • Nan Wu
  • Christopher Q. LanEmail author


Microalgae are a group of unicellular or simple multicellular photosynthetic microorganisms that can fix CO2 efficiently from different sources, including the atmosphere, industrial exhaust gases, and soluble carbonate salts. Combination of CO2 fixation, biofuel production, and wastewater treatment may provide a very promising alternative to current CO2 mitigation strategies.


Microalga CO2 mitigation Biofuel Biodiesel Biomass conversion 



Final supports from NSERC (the Natural Science and Engineering Research Council, Canada) are gratefully acknowledged.


  1. Agren GI (2004) The C:N:P stoichiometry of autotrophs—theory and observations. Ecol Lett 7:185–191CrossRefGoogle Scholar
  2. Antal Jr MJ, Allen SG, Schulman D, Xu X, Divilio RJ (2000) Biomass gasification in supercritical water. Ind Eng Chem Res 39:4040–4053CrossRefGoogle Scholar
  3. Bayer FL (1981) Pyrolysis gas chromatographic characterization differentiation and identification of biopolymers—an overview. Adv Chem Ser 1983:693–704Google Scholar
  4. Belarbi EH, Molina E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Tech 26:516–529CrossRefGoogle Scholar
  5. Benemann JR, Koopman BL, Weissman JC, Oswald WJ (1977) Solar energy conversion with microalgal sewage treatment ponds. Proc Annu Meet Am Sect Int Sol Energy Soc 1:5Google Scholar
  6. Berberoglu H, Yin J, Pilon L (2007) Light transfer in bubble sparged photobioreactors for H2 production and CO2 mitigation. Int J Hydrogen Energy 32:2273–2285CrossRefGoogle Scholar
  7. Blauwhoff PMM, Versteeg GF, Van Swaaij WPM (1984) A study on the reaction between CO2 and alkanolamines in aqueous solutions. Chem Eng Sci 39:207–225CrossRefGoogle Scholar
  8. Bold HC, Wynne MJ (1985) Introduction to the Algae, 2nd ed, Prentice-Hall, Inc., Englewood Cliffs, NJ, USAGoogle Scholar
  9. Bonenfant D, Mimeault M, Hausler R (2003) Determination of the structural features of distinct amines important for the absorption of CO2 and regeneration in aqueous solution. Ind Eng Chem Res 42:3179–3184CrossRefGoogle Scholar
  10. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321CrossRefGoogle Scholar
  11. Chelf P, Brown LM, Wyman CE (1993) Aquatic biomass resources and carbon dioxide trapping. Biomass Bioenergy 4:175–183CrossRefGoogle Scholar
  12. Chiaramonti D, Oasmaa A, Solantausta Y (2007) Power generation using fast pyrolysis liquids from biomass. Renew Sustain Energy Rev 11:1056–1086CrossRefGoogle Scholar
  13. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  14. Colman B, Rotatore C (1995) Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Environ 18:919–924CrossRefGoogle Scholar
  15. Cooper CD, Alley FC (1994) Air pollution control: a design approach. Waveland, Prospect Heights, ILGoogle Scholar
  16. de Morais MG, Costa JAV (2007a) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445CrossRefGoogle Scholar
  17. de Morais MG, Costa JAV (2007b) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manag 48:2169–2173CrossRefGoogle Scholar
  18. Demirbas A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41:633–646CrossRefGoogle Scholar
  19. Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378CrossRefGoogle Scholar
  20. Demirbas A (2004) Current technologies for the thermo-conversion of biomass into fuels and chemicals. Energy Source 26:715–730CrossRefGoogle Scholar
  21. Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama S-Y (1994) Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 73:1855–1857CrossRefGoogle Scholar
  22. Elliott DC, Sealock Jr LJ (1996) Chemical processing in high-pressure aqueous environments: low-temperature catalytic gasification. Chem Eng Res Des 74:563–566Google Scholar
  23. Emma Huertas I, Colman B, Espie GS, Lubian LM (2000) Active transport of CO2 by three species of marine microalgae. J Phycol 36:314–320CrossRefGoogle Scholar
  24. Feng W, van der Kooi HJ, de Swaan Arons J (2004) Phase equilibria for biomass conversion processes in subcritical and supercritical water. Chem Eng J 98:105–113CrossRefGoogle Scholar
  25. Gauthier DA, Turpin DH (1997) Interactions between inorganic phosphate (Pi) assimilation, photosynthesis and respiration in the Pi-limited green alga Selenastrum minutum. Plant Cell Environ 20:12–24CrossRefGoogle Scholar
  26. Ginzburg BZ (1993) Liquid fuel (oil) from halophilic algae: a renewable source of non-polluting energy. Renew Energy 3:249–252CrossRefGoogle Scholar
  27. Gomez-Villa H, Voltolina D, Nieves M, Pina P (2005) Biomass production and nutrient budget in outdoor cultures of Scenedesmus obliquus (Chlorophyceae) in artificial wastewater, under the winter and summer conditions of Mazatlan, Sinaloa, Mexico. Vie et Milieu 55:121–126Google Scholar
  28. Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12:504–517CrossRefGoogle Scholar
  29. Gupta H, Fan LS (2002) Carbonation–calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind Eng Chem Res 41:4035–4042CrossRefGoogle Scholar
  30. Gutierrez R, Gutierrez-Sanchez R, Nafidi A (2008) Trend analysis using nonhomogeneous stochastic diffusion processes. Emission of CO2; Kyoto protocol in Spain. Stoch Environ Res Risk Assess 22:57–66CrossRefGoogle Scholar
  31. Heasman M, Diemar J, O’Connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve mollusks—a summary. Aquacult Res 31:637–659CrossRefGoogle Scholar
  32. Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45:399–404CrossRefGoogle Scholar
  33. Hooper LA, Hollein HC, Slater CS (1998) Microfiltration of Streptomyces rimosus: cell harvesting process studies. Sep Sci Technol 33:1747–1765Google Scholar
  34. Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60CrossRefGoogle Scholar
  35. Hung MT, Liu JC (2006) Microfiltration for separation of green algae from water. Colloids Surf B Biointerfaces 51:157–164CrossRefGoogle Scholar
  36. Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strategies Glob Chang 12:573–608CrossRefGoogle Scholar
  37. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635CrossRefGoogle Scholar
  38. Iwasaki I, Hu Q, Kurano N, Miyachi S (1998) Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a ‘high-CO2’ tolerant green alga, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. J Photochem Photobiol B 44:184–190CrossRefGoogle Scholar
  39. Javanmardian M, Palsson BO (1991) High-density photoautotrophic algal cultures: design, construction, and operation of a novel photobioreactor system. Biotechnol Bioeng 38:1182–1189CrossRefGoogle Scholar
  40. Kadam KL (1997) Power plant flue gas as a source of CO2 for microalgae cultivation: economic impact of different process options. Energy Convers Manag 38(Suppl 1):S505–S510CrossRefGoogle Scholar
  41. Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P (2007) Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresource Technol 98:288–295CrossRefGoogle Scholar
  42. Kawata M, Nanba M, Matsukawa R, Chihara M, Karube I (1998) Isolation and characterization of a green alga Neochloris sp. for CO2 fixation. Stud Surf Sci Catal 114:637–640CrossRefGoogle Scholar
  43. Kishimoto M, Okakura T, Nagashima H, Minowa T, Yokoyama SY, Yamaberi K (1994) CO2 fixation and oil production using micro-algae. J Ferment Bioeng 78:479–482CrossRefGoogle Scholar
  44. Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult Eng 35:300–313CrossRefGoogle Scholar
  45. Kondili EM, Kaldellis JK (2007) Biofuel implementation in East Europe: current status and future prospects. Renew Sustain Energy Rev 11:2137–2151CrossRefGoogle Scholar
  46. Krumdieck S, Wallace J, Curnow O (2008) Compact, low energy CO2 management using amine solution in a packed bubble column. Chem Eng J 135:3–9CrossRefGoogle Scholar
  47. Li Y. Horsman M., Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotech Prog (in press) ASAP Article, DOI  10.1021/bp070371kS8756-7938(07)00371-2
  48. Lin CC, Liu WT, Tan CS (2003) Removal of carbon dioxide by absorption in a rotating packed bed. Ind Eng Chem Res 42:2381–2386CrossRefGoogle Scholar
  49. Lourenco SO, Barbarino E, Lanfer Marquez UM, Aidar E (1998) Distribution of intracellular nitrogen in marine microalgae: basis for the calculation of specific nitrogen-to-protein conversion factors. J Phycol 34:798–811CrossRefGoogle Scholar
  50. Lourenco SO, Barbarino E, Mancini-Filho J, Schinke KP, Aidar E (2002) Effects of different nitrogen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: an evaluation for aquaculture. Phycologia 41:158–168CrossRefGoogle Scholar
  51. Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers Manag 36:717–720CrossRefGoogle Scholar
  52. Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. BioMetals 15:377–390CrossRefGoogle Scholar
  53. Mandalam RK, Palsson B (1998) Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnol Bioeng 59:605–611CrossRefGoogle Scholar
  54. Martinez ME, Jimenez JM, El Yousfi F (1999) Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus. Bioresour Technol 67:233–240CrossRefGoogle Scholar
  55. Matsumoto H, Hamasaki A, Sioji N, Ikuta Y (1997) Influence of CO2, SO2 and no in flue gas on microalgae productivity. J Chem Eng Japan 30:620–624CrossRefGoogle Scholar
  56. Matsumura Y, Sasaki M, Okuda K, Takami S, Ohara S, Umetsu M, Adschiri T (2006) Supercritical water treatment of biomass for energy and material recovery. Combust Sci Technol 178:509–536CrossRefGoogle Scholar
  57. McKendry P (2002a) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54CrossRefGoogle Scholar
  58. McKendry P (2002b) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63CrossRefGoogle Scholar
  59. Merrett MJ, Nimer NA, Dong LF (1996) The utilization of bicarbonate ions by the marine microalga Nannochloropsis oculata (Droop) Hibberd. Plant Cell Environ 19:478–484CrossRefGoogle Scholar
  60. Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93CrossRefGoogle Scholar
  61. Miao X, Wu Q, Yang C (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrol 71:855–863CrossRefGoogle Scholar
  62. Minowa T, Sawayama S (1999) Novel microalgal system for energy production with nitrogen cycling. Fuel 78:1213–1215CrossRefGoogle Scholar
  63. Molina Grima E, Belarbi EH, Acien Fernandez FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRefGoogle Scholar
  64. Murakami M, Ikenouchi M (1997) The biological CO2 fixation and utilization project by RITE (2): screening and breeding of microalgae with high capability in fixing CO2. Energy Convers Manag 38(Suppl 1):S493–S497CrossRefGoogle Scholar
  65. Osada M, Sato T, Watanabe M, Adschiri T, Arai K (2004) Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Energy Fuel 18:327–333CrossRefGoogle Scholar
  66. Oswald WJ (1973) Productivity of algae in sewage disposal. Solar Energy 15(1):107–117CrossRefGoogle Scholar
  67. Peng W, Wu Q, Tu P, Zhao N (2001) Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresour Technol 80:1–7CrossRefGoogle Scholar
  68. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL et al (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489CrossRefGoogle Scholar
  69. Ratledge C (2002) Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans 30:1047–1050CrossRefGoogle Scholar
  70. Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149CrossRefGoogle Scholar
  71. Rebolloso-Fuentes MM, Navarro-Perez A, Garcia-Camacho F, Ramos-Miras JJ, Guil-Guerrero JL (2001) Biomass nutrient profiles of the microalga Nannochloropsis. J Agr Food Chem 49:2966–2972CrossRefGoogle Scholar
  72. Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979CrossRefGoogle Scholar
  73. Resnik KP, Yeh JT, Pennline HW (2004) Aqua ammonia process for simultaneous removal of CO2, SO 2 and NOx. Int J Environ Technol Manag 4:89–104Google Scholar
  74. Roden EE, Zachara JM (1996) Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol 30:1618–1628CrossRefGoogle Scholar
  75. Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–985CrossRefGoogle Scholar
  76. Rosello Sastre R, Csogor Z, Perner-Nochta I, Fleck-Schneider P, Posten C (2007) Scale-down of microalgae cultivations in tubular photo-bioreactors—a conceptual approach. J Biotechnol 132:127–133CrossRefGoogle Scholar
  77. Sakai N, Sakamoto Y, Kishimoto N, Chihara M, Karube I (1995) Chlorella strains from hot springs tolerant to high temperature and high CO2. Energy Convers Manag 36:693–696CrossRefGoogle Scholar
  78. Scragg AH, Illman AM, Carden A, Shales SW (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23:67–73CrossRefGoogle Scholar
  79. Seefeldt LC (2007) Utah group plans to make biodiesel from algae. Ind Bioprocess 29:5–6Google Scholar
  80. Shi M, Shen YM (2003) Recent progresses on the fixation of carbon dioxide. Curr Org Chem 7:737–745CrossRefGoogle Scholar
  81. Skjanes K, Lindblad P, Muller J (2007) BioCO2—a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol Eng 24:405–413CrossRefGoogle Scholar
  82. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefGoogle Scholar
  83. Sutton D, Kelleher B, Ross JRH (2001) Review of literature on catalysts for biomass gasification. Fuel Proc Technol 73:155–173CrossRefGoogle Scholar
  84. Terry KL, Raymond LP (1985) System design for the autotrophic production of microalgae. Enzyme Microb Technol 7:474–487CrossRefGoogle Scholar
  85. Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Technol 5:435–440CrossRefGoogle Scholar
  86. Travieso L, Hall DO, Rao KK, Benitez F, Sanchez E, Borja R (2001) A helical tubular photobioreactor producing Spirulina in a semicontinuous mode. Int Biodeterior Biodegrad 47:151–155CrossRefGoogle Scholar
  87. Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Petrol Inst 48:251–259CrossRefGoogle Scholar
  88. Usui N, Ikenouchi M (1997) The biological CO2 fixation and utilization project by RITE(1): highly-effective photobioreactor system. Energy Convers Manag 38(Suppl 1):S487–S492CrossRefGoogle Scholar
  89. Vonshak A, Richmond A (1988) Mass production of the blue-green alga spirulina: an overview. Biomass London 15:233–247CrossRefGoogle Scholar
  90. Weissman JC, Goebel RP, Benemann JR (1988) Phhotobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344CrossRefGoogle Scholar
  91. Yamaberi K, Takagi M, Yoshida T (1998) Nitrogen depletion for intracellular triglyceride accumulation to enhance liquefaction yield of marine microalgal cells into a fuel oil. J Mar Biotechnol 6:44–48Google Scholar
  92. Yeh JT, Pennline HW, Resnik KP (2001) Study of CO2 absorption and desorption in a packed column. Energy Fuel. 15:274–278CrossRefGoogle Scholar
  93. Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69:451–455CrossRefGoogle Scholar
  94. Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Bei Wang
    • 1
  • Yanqun Li
    • 1
  • Nan Wu
    • 1
  • Christopher Q. Lan
    • 1
    Email author
  1. 1.Department of Chemical EngineeringThe University of OttawaOttawaCanada

Personalised recommendations