Applied Microbiology and Biotechnology

, Volume 79, Issue 6, pp 1001–1008 | Cite as

High-level overproduction of Thermus enzymes in Streptomyces lividans

  • Margarita Díaz
  • Eloy Ferreras
  • Renata Moreno
  • Ana Yepes
  • José Berenguer
  • Ramón Santamaría
Applied Genetics and Molecular Biotechnology


Biotechnology needs to explore the capacity of different organisms to overproduce proteins of interest at low cost. In this paper, we show that Streptomyces lividans is a suitable host for the expression of Thermus thermophilus genes and report the overproduction of the corresponding proteins. This capacity was corroborated after cloning the genes corresponding to an alkaline phosphatase (a periplasmic enzyme in T. thermophilus) and that corresponding to a beta-glycosidase (an intracellular enzyme) in Escherichia coli and in S. lividans. Comparison of the production in both hosts revealed that the expression of active protein achieved in S. lividans was much higher than in E. coli, especially in the case of the periplasmic enzyme. In fact, the native signal peptide of the T. thermophilus phosphatase was functional in S. lividans, being processed at the same peptide bond in both organisms, allowing the overproduction and secretion of this protein to the S. lividans culture supernatant. As in E. coli, the thermostability of the expressed proteins allowed a huge purification factor upon thermal denaturation and precipitation of the host proteins. We conclude that S. lividans is a very efficient and industry-friendly host for the expression of thermophilic proteins from Thermus spp.


Xylose Streptomyces Codon Usage Coomassie Blue Staining Thermostable Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by grants CSI02A05 from the Junta de Castilla y León to R. Santamaría and BIO2007-60245 and S0505/PPQ/0344 from the Ministry of Education and Science and the Comunidad Autónoma de Madrid, respectively, to J. Berenguer. Institutional grants from Fundación Ramón Areces to CBMSO and from Junta de Castilla y León are also acknowledged. We thank MJ Jimenez Rufo for her excellent technical work. Thanks are also due to N. Skinner for supervising the English version of the manuscript.


  1. Adham SA, Honrubia P, Díaz M, Fernández-Ábalos JM, Santamaría RI, Gil JA (2001) Expression of the genes coding for the xylanase Xys1 and the cellulase Cel1 from the straw-decomposing Streptomyces halstedii JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Arch Microbiol 177:91–97CrossRefGoogle Scholar
  2. Angelini S, Moreno R, Gouffi K, Santini C, Yamagishi A, Berenguer J, Wu L (2001) Export of Thermus thermophilus alkaline phosphatase via the twin-arginine translocation pathway in Escherichia coli. FEBS Lett 506:103–107CrossRefGoogle Scholar
  3. Brickman E, Beckwith J (1975) Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and phi80 transducing phages. J Mol Biol 96:307–316CrossRefGoogle Scholar
  4. Castán P (2004) Desarrollo de cepas de interés biotecnológico mediante la manipulación de los genes recA y slpA de Thermus thermophilus. PhD thesis. Departamento de Biología Molecular. Universidad Autónoma de Madrid. MadridGoogle Scholar
  5. Castán P, Zafra O, Moreno R, de Pedro MA, Vallés C, Cava F, Caro E, Schwarz H, Berenguer J (2002) The periplasmic space in Thermus thermophilus: evidence from a regulation-defective S-layer mutant overexpressing an alkaline phosphatase. Extremophiles 6:225–232CrossRefGoogle Scholar
  6. Cava F, Berenguer J (2006) Biochemical and regulatory properties of a respiratory island encoded by a conjugative plasmid in the extreme thermophile Thermus thermophilus. Biochem Soc Trans 34:97–100CrossRefGoogle Scholar
  7. Cava F, de Pedro MA, Blas-Galindo E, Waldo GS, Westblade LF, Berenguer J (2008) Expression and use of superfolder green fluorescent protein at high temperatures in vivo: a tool to study extreme thermophile biology. Environ Microbiol 10:605–613CrossRefGoogle Scholar
  8. Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A 100(Suppl 2):14555–14561CrossRefGoogle Scholar
  9. Dion M, Fourage L, Hallet JN, Colas B (1999) Cloning and expression of a beta-glycosidase gene from Thermus thermophilus. Sequence and biochemical characterization of the encoded enzyme. Glycoconj J 16:27–37CrossRefGoogle Scholar
  10. Díaz M, Adham SA, Ramón D, Gil JA, Santamaría RI (2004) Streptomyces lividans and Brevibacterium lactofermentum as heterologous hosts for the production of X22 xylanase from Aspergillus nidulans. Appl Microbiol Biotechnol 65:401–406CrossRefGoogle Scholar
  11. Gong N, Chen C, Xie L, Chen H, Lin X, Zhang R (2005) Characterization of a thermostable alkaline phosphatase from a novel species Thermus yunnanensis sp. nov. and investigation of its cobalt activation at high temperature. Biochim Biophys Acta 1750:103–111Google Scholar
  12. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580CrossRefGoogle Scholar
  13. Henne A, Bruggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R, Jacobi C, Starkuviene V, Schlenczeck S, Dencker S, Huber R, Klenk HP, Kramer W, Merkl R, Gottschalk G, Fritz HJ (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22:547–553CrossRefGoogle Scholar
  14. Hidalgo A, Betancor L, Moreno R, Zafra O, Cava F, Fernández-Lafuente R, Guisán JM, Berenguer J (2004) Thermus thermophilus as a cell factory for the production of a thermophilic Mn-dependent catalase which fails to be synthesized in an active form in Escherichia coli. Appl Environ Microbiol 70:3839–3844CrossRefGoogle Scholar
  15. Katz E, Thompson CJ, Hopwood DA (1983) Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol 129:2703–2714Google Scholar
  16. Kayser KJ, Kilbane JJ 2nd (2001) New host-vector system for Thermus spp. based on the malate dehydrogenase gene. J Bacteriol 183:1792–1795CrossRefGoogle Scholar
  17. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical streptomyces genetics. John Innes Centre, NorwichGoogle Scholar
  18. Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor, New YorkGoogle Scholar
  19. Moreno R, Zafra O, Cava F, Berenguer J (2003) Development of a gene expression vector for Thermus thermophilus based on the promoter of the respiratory nitrate reductase. Plasmid 49:2–8CrossRefGoogle Scholar
  20. Moreno R, Haro A, Castellanos A, Berenguer J (2005) High-level overproduction of His-tagged Tth DNA polymerase in Thermus thermophilus. Appl Environ Microbiol 71:591–593CrossRefGoogle Scholar
  21. Pallen MJ, Chaudhuri RR, Henderson IR (2003) Genomic analysis of secretion systems. Curr Opin Microbiol 6:519–527CrossRefGoogle Scholar
  22. Pantazaki AA, Pritsa AA, Kyriakidis DA (2002) Biotechnologically relevant enzymes from Thermus thermophilus. Appl Microbiol Biotechnol 58:1–12CrossRefGoogle Scholar
  23. Pessela BC, Vian A, Mateo C, Fernández-Lafuente R, García JL, Guisán JM, Carrascosa AV (2003) Overproduction of Thermus sp. Strain T2 beta-galactosidase in Escherichia coli and preparation by using tailor-made metal chelate supports. Appl Environ Microbiol 69:1967–1972CrossRefGoogle Scholar
  24. Pessela BC, Torres R, Fuentes M, Mateo C, Filho M, Carrascosa AV, Vian A, García JL, Guisán JM, Fernández-Lafuente R (2004) A simple strategy for the purification of large thermophilic proteins overexpressed in mesophilic microorganisms: application to multimeric enzymes from Thermus sp. strain T2 expressed in Escherichia coli. Biotechnol Prog 20:1507–1511CrossRefGoogle Scholar
  25. Rodríguez S, Santamaría RI, Fernández-Ábalos JM, Díaz M (2005) Identification of the sequences involved in the glucose-repressed transcription of the Streptomyces halstedii JM8 xysA promoter. Gene 351:1–9CrossRefGoogle Scholar
  26. Ruiz-Arribas A, Fernández-Ábalos JM, Sánchez P, Garda AL, Santamaría RI (1995) Overproduction, purification, and biochemical characterization of a xylanase (Xys1) from Streptomyces halstedii JM8. Appl Environ Microbiol 61:2414–2419Google Scholar
  27. Santamaría R, Ruiz-Arribas A, González Holgado G, Rodríguez S, Díaz M, Fernández-Ábalos JM (2005) Secuencia de nucleótidos promotora de la expresión génica derivada de la región promotora del gen xysA. Consejo Superior de Investigaciones Científicas (CSIC) España. ES 2 235–562Google Scholar
  28. Sianidis G, Pozidis C, Becker F, Vrancken K, Sjoeholm C, Karamanou S, Takamiya-Wik M, van Mellaert L, Schaefer T, Anne J, Economou A (2006) Functional large-scale production of a novel Jonesia sp. xyloglucanase by heterologous secretion from Streptomyces lividans. J Biotechnol 121:498–507CrossRefGoogle Scholar
  29. Vallín C, Ramos A, Pimienta E, Rodríguez C, Hernández T, Hernández I, Del Sol R, Rosabal G, Van Mellaert L, Anne J (2006) Streptomyces as host for recombinant production of Mycobacterium tuberculosis proteins. Tuberculosis (Edinb) 86:198–202CrossRefGoogle Scholar
  30. Van Mellaert L, Anne J (2001) Gram-positive bacteria for the heterologous production of biopharmaceutical compounds. In: Van Broekhoven A, Shapiro F, Anne J (eds) Novel frontiers in the production of compounds for biomedical use. vol. 1. Kluwer Academic, New York, pp 277–300CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Margarita Díaz
    • 1
    • 3
  • Eloy Ferreras
    • 2
  • Renata Moreno
    • 2
  • Ana Yepes
    • 1
  • José Berenguer
    • 2
  • Ramón Santamaría
    • 1
  1. 1.Instituto de Microbiología Bioquímica, Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
  2. 2.Departamento de Biología Molecular, Centro de Biología Molecular Severo OchoaUniversidad Autónoma de MadridMadridSpain
  3. 3.Instituto de Microbiología Bioquímica, CSIC /Universidad de Salamanca, Edificio DepartamentalSalamancaSpain

Personalised recommendations