Applied Microbiology and Biotechnology

, Volume 79, Issue 5, pp 719–729 | Cite as

Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature

  • J. F. Sánchez
  • J. M. Fernández-Sevilla
  • F. G. Acién
  • M. C. Cerón
  • J. Pérez-Parra
  • E. Molina-Grima
Biotechnological Products and Process Engineering


In this paper, the biomass and lutein productivity of the lutein-rich new strain Scenedesmus almeriensis is modelled versus irradiance and temperature. The results demonstrate that S. almeriensis is a mesophile microorganism with an optimal growth temperature of 35°C, and capable of withstanding up to 48°C, which caused culture death. This strain is also tolerant to high irradiances, showing no signs of photoinhibition even at the maximum irradiance essayed of 1625 μE m−2 s−1 accumulating up to 0.55% dry weight (d.wt.) of lutein. The optimal conditions that maximise the biomass productivity also favour the lutein productivity, lutein being a primary metabolite. Maximal biomass and lutein productivities of 0.87 g l−1 day−1 and 4.77 mg l−1 day−1, respectively, were measured. The analysis of light availability inside the cultures, quantified as average irradiance, demonstrates that the cultures were mainly photo-limited, although photosaturation also took place at high external irradiances. The effect of temperature was also investigated finding that the specific maximal growth rate is modified by the temperature according to the Arrhenius equation. The influence of both light availability and temperature was included in an overall growth model, which showed, as a result, capable of fitting the whole set of experimental data. An overall lutein accumulation rate model was also proposed and used in a regression analysis. Simulations performed using the proposed models show that under outdoor conditions a biomass productivity of 0.95 g l−1 day−1 can be expected, with a lutein productivity up to 5.31 mg l−1 day−1. These models may be useful to assist the design and operation optimisation of outdoor cultures of this strain.


Scenedesmus almeriensis Lutein Biomass productivity Continuous culture Irradiance Temperature 



This research was supported by Ministerio de Educación y Ciencia (CTQ2005-00335/PPQ), Junta de Andalucía, Plan Andaluz de Investigación (CVI 131 &173), and Fundación CAJAMAR.


  1. Acién FG, García F, Sánchez JA, Fernández JM, Molina E (1998) Modelling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter and solar irradiance. Biotechnol. Bioeng 58:605–616CrossRefGoogle Scholar
  2. Del Campo JA, Moreno J, Rodríguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59Google Scholar
  3. Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 85:289–295CrossRefGoogle Scholar
  4. Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174CrossRefGoogle Scholar
  5. Del Río E, Acién FG, García-Malea MC, Rivas J, Molina E, Guerrero MG (2005) Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol Bioeng 91(7):808–815CrossRefGoogle Scholar
  6. Del Río E, Acién FG, García-Malea MC, Rivas J, Molina E, Guerrero MG (2008) Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis. Biotechnol Bioeng 100(2):397–402 DOI  10.1002/bit.21770
  7. Demming-Adams B, Adams WW III (2002) Antioxidants in photosynthesis nutrition. Science 298:2149–2153CrossRefGoogle Scholar
  8. Dweyer JH, Navab M, Dwyer KM, Hassan K, Sun P, Shircore A, Hama-Levy S, Hough G, Wang X, Drake T, Merz NB, Fogelman AM (2001) Oxygenated carotenoid lutein and the progression of early atherosclerosis. The Los Angeles atherosclerosis study. Circulation 103:2922–2927Google Scholar
  9. García-Malea MC, Acién FG, Fernández JM, Cerón MC, Molina E (2006) Continuous production of green cells of Haematococcus pluvialis: modelling of the irradiance effect. Enzyme Microb Technol 38:981–989CrossRefGoogle Scholar
  10. Guterman H, Vonshak A, Ben-Yaakov S (1990) A macromodel for outdoor algal mass production. Biotechnol Bioeng 35:809–819CrossRefGoogle Scholar
  11. Johnson-Down L, Saudny H, Gray-Donald K (2002) Food habits of Canadians: lutein and lycopene intake in the Canadian population. J Am Diet Assoc 102(7):988–991CrossRefGoogle Scholar
  12. Krinsky NI, Landrum JT, Bone RA (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Ann Rev Nutr 23:171–201CrossRefGoogle Scholar
  13. Mann JE, Myers J (1968) On pigments, growth and photosynthesis of Phaeodactylum tricornutum. J Phycol 4:349–355CrossRefGoogle Scholar
  14. Masojidek J, Torzillo G, Koblizek M, Kopecky J, Bernardini P, Sacchi A, Komenda J (1999) Photoadaptation of two members of the Chlorophyta Scenedesmus and Chlorella in laboratory and outdoor cultures: changes in chlorophyll fluorescence quenching and the xanthophylls cycle. Planta 209(1):126–135CrossRefGoogle Scholar
  15. Molina E, García F, Sánchez JA, Fernández JM, Acién FG, Contreras A (1994) A mathematical model of microalgal growth in light limited chemostat culture. J Chem Technol Biotechnol 61:167–173CrossRefGoogle Scholar
  16. Molina E, Fernández JM, Acién FG, Sánchez JF, García J, Magán JJ, Pérez J (2005) Production of lutein from the microalga Scenedesmus almeriensis in an industrial size photobioreactor: case study. Oral presentation at the 10th Internacional Conference on Applied Phycology, Kunming, ChinaGoogle Scholar
  17. Piccaglia R, Marotti M, Grandi S (1998) Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Ind Crops Prod 8(1):45–51CrossRefGoogle Scholar
  18. Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell Scientific Publications, LondonGoogle Scholar
  19. Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier, New YorkGoogle Scholar
  20. Sánchez JF, Fernández JM, Acién FG, Pérez J, Molina E (2007) Influence of culture conditions in the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43(4):398–405Google Scholar
  21. Shi XM, Zhang ZH, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27:312–318CrossRefGoogle Scholar
  22. Silva S (2004) Luteína, alimento para tu vista. Food Ingredients 80–81Google Scholar
  23. VERIS (Vitamin E Research and Information Service) (1997) Efficacy of carotenoids. VERIS Research Summary, August Vitamin E Research and Information Service, LaGrange, IllinoisGoogle Scholar
  24. Ziegler RG, Colavito EA, Hartge P, McAdams MJ, Schoenberg JB, Mason TJ, Fraumeni JF (1996) Importance of a-carotene, b-carotene and other phytochemicals in the etiology of lung cancer. J Natl Cancer Inst 88:612–615CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. F. Sánchez
    • 1
  • J. M. Fernández-Sevilla
    • 1
  • F. G. Acién
    • 3
  • M. C. Cerón
    • 1
  • J. Pérez-Parra
    • 2
  • E. Molina-Grima
    • 1
  1. 1.Department of Chemical EngineeringUniversity of AlmeríaAlmeríaSpain
  2. 2.Estación Experimental Las Palmerillas-CAJAMARAlmeríaSpain
  3. 3.Department of Chemical EngineeringUniversity of AlmeríaAlmeríaSpain

Personalised recommendations