Applied Microbiology and Biotechnology

, Volume 79, Issue 3, pp 339–354 | Cite as

The yeast Kluyveromyces marxianus and its biotechnological potential

  • Gustavo Graciano Fonseca
  • Elmar Heinzle
  • Christoph Wittmann
  • Andreas K. GombertEmail author


Strains belonging to the yeast species Kluyveromyces marxianus have been isolated from a great variety of habitats, which results in a high metabolic diversity and a substantial degree of intraspecific polymorphism. As a consequence, several different biotechnological applications have been investigated with this yeast: production of enzymes (β-galactosidase, β-glucosidase, inulinase, and polygalacturonases, among others), of single-cell protein, of aroma compounds, and of ethanol (including high-temperature and simultaneous saccharification-fermentation processes); reduction of lactose content in food products; production of bioingredients from cheese-whey; bioremediation; as an anticholesterolemic agent; and as a host for heterologous protein production. Compared to its congener and model organism, Kluyveromyces lactis, the accumulated knowledge on K. marxianus is much smaller and spread over a number of different strains. Although there is no publicly available genome sequence for this species, 20% of the CBS 712 strain genome was randomly sequenced (Llorente et al. in FEBS Lett 487:71–75, 2000). In spite of these facts, K. marxianus can envisage a great biotechnological future because of some of its qualities, such as a broad substrate spectrum, thermotolerance, high growth rates, and less tendency to ferment when exposed to sugar excess, when compared to K. lactis. To increase our knowledge on the biology of this species and to enable the potential applications to be converted into industrial practice, a more systematic approach, including the careful choice of (a) reference strain(s) by the scientific community, would certainly be of great value.


Kluyveromyces marxianus Yeast biotechnology Yeast physiology Yeast taxonomy 



Grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Brazil), Deutscher Akademischer Austausch Dienst (DAAD) (Germany), and Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Brazil) are acknowledged.


  1. Abranches J, Morais PB, Rosa CA, Mendonça-Hagler LC, Hagler AN (1997) The incidence of killer activity and extracellular proteases in tropical yeast communities. Can J Microbiol 43:328–336Google Scholar
  2. Aksu Z, Dönmez G (2000) The use of molasses in copper (II) containing wastewaters: effects on growth and copper (II) bioaccumulation properties of Kluyveromyces marxianus. Proc Biochem 36:451–458Google Scholar
  3. Aktas N, Boyacı IH, Mutlu M, Tanyolac A (2005) Optimization of lactose utilization in deproteinated whey by Kluyveromyces marxianus using response surface methodology (RSM). Biores Technol 97:2252–2259Google Scholar
  4. Almeida C, Branyik T, Moradas-Ferreira P, Teixeira J (2003a) Continuous production of pectinase by immobilized yeast cells on spent grains. J Biosci Bioeng 96:513–518Google Scholar
  5. Amrane A, Prigent Y (1996) Behaviour of the yeast Kluyveromyces marxianus var. marxianus during its autolysis. Antonie van Leeuwenhoek 69:267–272Google Scholar
  6. Anderson PJ, McNeil K, Watson K (1986) High-efficiency carboidrate fermentation to ethanol at temperatures above 40°C by Kluyveromyces marxianus var. marxianus isolated from sugar mills. Appl Environ Microbiol 51:1314–1320Google Scholar
  7. Bacci Júnior M, Siqueira CG, Antoniazi SA, Ueta J (1996) Location of the b-galactosidase of the yeast Kluyveromyces marxianus var. marxianus ATCC 10022. Antonie van Leeuwenhoek 69:357–361Google Scholar
  8. Bajpai P, Margaritis A (1982) Ethanol inhibition kinetics of Kluyveromyces marxianus grown on Jerusalem artichoke juice. Appl Environ Microbiol 44:1325–1329Google Scholar
  9. Bajpai P, Margaritis A (1987a) Kinetics of ethanol production by immobilized Kluyveromyces marxianus cells at varying sugar concentrations of Jerusalem artichoke juice. Appl Microbiol Biotechnol 26:447–449Google Scholar
  10. Bajpai P, Margaritis A (1987b) The effect of temperature and pH on ethanol production by free and immobilized cells of Kluyveromyces marxianus grown on Jerusalem artichoke extract. Biotechnol Bioeng 30:306–313Google Scholar
  11. Ball MM, Raynal A, Guerineau M, Iborra F (1999) Construction of efficient centromeric, multicopy and expression vectors for the yeast Kluyveromyces marxianus using homologous elements and the promoter of a purine-cytosine-like permease. J Mol Microbiol Biotechnol 1:347–353Google Scholar
  12. Ballesteros I, Ballesteros M, Cabanas A, Carrasco J, Martin C, Negro MJ, Saez F, Saez R (1991) Selection of thermotolerant yeasts for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol. Appl Biochem Biotechnol 28:307–315Google Scholar
  13. Ballesteros I, Oliva JM, Negro MJ, Manzanares P, Ballesteros M (2002a) Simultaneous saccharification and fermentation process for converting the cellulosic fraction of olive oil extraction residue into ethanol. Grasas y Aceites 53:282–288Google Scholar
  14. Ballesteros M, Oliva JM, Manzanares P, Negro MJ, Ballesteros I (2002b) Ethanol production from paper material using a simultaneous saccharification and fermentation system in a fed-batch basis. World J Microbiol Biotechnol 18:559–561Google Scholar
  15. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Proc Biochem 39:1843–1848Google Scholar
  16. Banat IM, Nigam P, Marchant R (1992) Isolation of thermotolerant, fermentative yeasts growing at 52°C and producing ethanol at 45°C and 50°C. World J Microbiol Biotechnol 8:259–263Google Scholar
  17. Banat IM, Singh D, Marchant R (1996) The use of a thermotolerant fermentative Kluyveromyces marxianus IMB3 yeast strain for ethanol production. Acta Biotechnol 16:215–223Google Scholar
  18. Banat IM, Nigam P, Singh D, Marchant R, McHale AP (1998) Ethanol production at elevated temperatures and alcohol concentrations: Part I - Yeasts in general. World J Microbiol Biotechnol 14:809–821Google Scholar
  19. Barnby FM, Morpeth FF, Pyle DL (1990) Endopolygalacturonase production from Kluyveromyces marxianus. Resolution, purification, and partial characterisation of the enzyme. Enzyme Microb Technol 12:891–897Google Scholar
  20. Barnett JA, Payne RW, Yarrow D (1983) Yeasts: characteristics and identification. Cambridge University Press, CambridgeGoogle Scholar
  21. Barranco-Florido E, García-Garibay M, Gómez-Ruiz L, Azaola A (2001) Immobilization system of Kluyveromyces marxianus cells in barium alginate for inulin hydrolysis. Proc Biochem 37:513–519Google Scholar
  22. Barron N, Marchant R, McHale L, McHale AP (1995a) Partial characterization of b-glucosidase activity produced by Kluyveromyces marxianus IMB3 during growth on cellobiose containing media at 45°C. Biotechnol Lett 17:1047–1050Google Scholar
  23. Barron N, Marchant R, McHale L, McHale AP (1995b) Studies on the use of a thermotolerant strain of Kluyveromyces marxianus in simultaneous saccharification and ethanol formation from cellulose. Appl Microbiol Biotechnol 43:518–520Google Scholar
  24. Barron N, Marchant R, McHale L, McHale AP (1996) Ethanol production from cellulose at 45°C using a batch-fed system containing alginate-immobilized Kluyveromyces marxianus IMB3. World J Microbiol Biotechnol 12:103–104Google Scholar
  25. Barron N, Mulholland H, Boyle M, McHale AP (1997) Ethanol production by Kluyveromyces marxianus IMB3 during growth on straw-supplemented whiskey distillery spentwash at 45°C. Bioproc Eng 17:383–386Google Scholar
  26. Bartkevičiute D, Sasnauskas K (2003) Studies of yeast Kluyveromyces lactis mutations conferring super-secretion of recombinant proteins. Yeast 20:1–11Google Scholar
  27. Bartkevičiūtė D, Šiekštelė R, Sasnauskas K (2000) Heterologous expression of the Kluyveromyces marxianus endopolygalacturonase gene (EPG1) using versatile autonomously replicating vector for a wide range of host. Enzyme Microb Technol 26:653–656Google Scholar
  28. Basabe L, Cabrera N, Yong V, Menéndez J, Delgado JM, Rodríguez L (1996) Isolation and characterization of mutants as an approach to a transformation system in Kluyveromyces marxianus. Curr Genet 30:89–92Google Scholar
  29. Beezer AE, Newell RD, Tyrrell HJ (1979) Characterisation and metabolic studies of Saccharomyces cerevisiae and Kluyveromyces fragilis by flow microcalorimetry. Antonie van Leeuwenhoek 45:55–63Google Scholar
  30. Belem MAF, Lee BH (1998) Production of bioingredients from Kluyveromyces marxianus grown on whey: an alternative. Crit Rev Food Sci Nut 38:565–598Google Scholar
  31. Belem MAF, Lee BH (1999) Fed-batch fermentation to produce ologonucleotides from Kluyveromyces marxianus grown on whey. Proc Biochem 34:501–509Google Scholar
  32. Belem MAF, Gibbs BF, Lee BH (1997) Enzymatic production of ribonucleotides from autolysates of Kluyveromyces marxianus grown on whey. J Food Sci 62:851–857Google Scholar
  33. Bellaver LH, de Carvalho NMB, Abrahão-Neto J, Gombert AK (2004) Ethanol formation and enzyme activities around glucose-6-phosphate in Kluyveromyces marxianus CBS 6556 exposed to glucose or lactose excess. FEMS Yeast Res 4:691–698Google Scholar
  34. Ben-Hassan RM, Ghaly AE (1995) Continuous production of single-cell protein from cheese whey lactose using Kluyveromyces fragilis. Trans ASAE 38:1121–1127Google Scholar
  35. Ben-Hassan RM, Ghaly AE, Ben-Abdallah N (1992) Metabolism of cheese whey lactose by Kluyveromyces fragilis for energy and growth under batch condition. Appl Biochem Biotechnol 33:97–116CrossRefGoogle Scholar
  36. Bergkamp RJ, Geerse RH, Verbakel JM, Musters W, Planta RJ (1991) Cloning and disruption of the LEU2 gene of Kluyveromyces marxianus CBS 6556. Yeast 7:963–970Google Scholar
  37. Bergkamp RJM, Bootsmas TC, Toschka HY, Mooren ATA, Kox L, Verbakel JMA, Geerse RH, Planta RJ (1993a) Expression of an a-galactosidase gene under control of the homologous inulinase promoter in Kluyveromyces marxianus. Appl Microbiol Biotechnol 40:309–317Google Scholar
  38. Bergkamp RJ, Geerse RH, Verbakel JM, Planta RJ (1993b) Cloning and sequencing of the URA3 gene of Kluyveromyces marxianus CBS 6556. Yeast 9:677–681Google Scholar
  39. Bhattacharjee H, Bhaduri A (1992) Distinct functional roles of two active site thiols in UDPglucose 4-epimerase from Kluyveromyces fragilis. J Biol Chem 267:11714–11720Google Scholar
  40. Bianchi MM, Falcone C, Re CX, Wéslowski-Louvel M, Frontali L, Fukuhara H (1987) Transformation of the yeast Kluyveromyces lactis by new vectors derived from the 1.6 mm circular plasmid pKD1. Curr Genet 12:185–192Google Scholar
  41. Blanco P, Sieiro C, Villa TG (1999) Production of pectic enzymes in yeasts. FEMS Microbiol Lett 175:1–9Google Scholar
  42. Blank LM, Lehmbeck F, Sauer U (2005) Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 5:545–558Google Scholar
  43. Boyle M, Barron N, McHale AP (1997) Simultaneous saccharification and fermentation of straw to ethanol using the thermotolerant yeast strain Kluyveromyces marxianus IMB 3. Biotechnol Lett 19:49–51Google Scholar
  44. Brady D, Marchant R, McHale L, McHale AP (1995) Isolation and partial characterization of b-galactosidase activity produced by a thermotolerant strain of Kluyveromyces marxianus during growth on lactose-containing media. Enzyme Microb Technol 17:696–699Google Scholar
  45. Brady D, Nigam P, Marchant R, McHale L, McHale AP (1996) Ethanol production at 45°C by Kluyveromyces marxianus IMB3 immobilized in magnetically responsive alginate matrices. Biotechnol Lett 18:1213–1216Google Scholar
  46. Brady D, Nigam P, Marchant R, McHale AP (1997a) Ethanol production at 45°C by alginate-immobilized Kluyveromyces marxianus IMB3 during growth on lactose-containing media. Bioproc Eng 16:101–104Google Scholar
  47. Brady D, Nigam P, Marchant R, Singh D, McHale AP (1997b) The effect of Mn2+ on ethanol production from lactose using Kluyveromyces marxianus IMB3 immobilized in magnetically responsive matrices. Bioproc Eng 17:31–34Google Scholar
  48. Brady D, Logan SR, McHale AP (1998) The effect of soluble alginate and calcium on b-galactosidase activity produced by the thermotolerant, ethanol-producing yeast strain Kluyveromyces marxianus IMB3. Bioproc Eng 18:101–104Google Scholar
  49. Breunig KD, Steensma HY (2003) Kluyveromyces lactis: genetics, physiology, and application. In: de Winde JH (ed) Functional genetics of industrial yeasts, Topics in current genetics, vol. 2. Springer-Verlag, Berlin Heidelberg New York, pp 171–205Google Scholar
  50. Büschges R, Bahrenberg G, Zimmermann M, Wolf K (1994) NADH: ubiquinone oxidoreductase in obligate aerobic yeasts. Yeast 10:475–479Google Scholar
  51. Caballero R, Olguín P, Cruz-Guerrero A, Gallardo F, García-Garibay M, Gómez-Ruiz L (1995) Evaluation of Kluyveromyces marxianus as baker’s yeast. Food Res Int 28:37–41Google Scholar
  52. Carvalho-Silva M, Spencer-Martins I (1990) Modes of lactose uptake in the yeast species Kluyveromyces marxianus. Antonie van Leeuwenhoek 57:77–81Google Scholar
  53. Cassart JP, Ostling J, Ronne H, Vandenhaute J (1997) Comparative analysis in three fungi reveals structurally and functionally conserved regions in the Mig1 repressor. Mol Gen Genet 255:9–18Google Scholar
  54. Castrillo JI, Ugalde UO (1993) Patterns of energy metabolism and growth kinetics of Kluyveromyces marxianus in whey chemostat culture. Appl Microbiol Biotechnol 40:386–393Google Scholar
  55. Chassang-Douillet A, Ladet J, Boze H, Galzy P (1973) Respiratory metabolism of Kluyveromyces fragilis van der Walt. Z Allg Mikrobiol 13:193–199Google Scholar
  56. Chen XJ, Saliola M, Falcone C, Bianchi MM, Fukuhara H (1986) Sequence organization of the circular plasmid pKD1 from the yeast Kluyveromyces drosophilarum. Nucleic Acids Res 14:4471–4481Google Scholar
  57. Chen XJ, Bianchi MM, Suda K, Fukuhara H (1989) The host range of the pKD1-derived plasmids in yeast. Curr Genet 16:95–98Google Scholar
  58. Corpillo D, Valetti F, Giuffrida MG, Conti A, Rossi A, Finazzi-Agrò A, Giunta C (2003) Induction and characterization of a novel amine oxidase from the yeast Kluyveromyces marxianus. Yeast 20:369–379Google Scholar
  59. Cruz-Guerrero A, García-Peña I, Bárzana E, García-Garibay M, Gómez-Ruiz L (1995) Kluyveromyces marxianus CDBB-L-278: a wild inulinase hyperproducing strain. J Ferm Bioeng 80:159–163Google Scholar
  60. Cruz-Guerrero A, Bárzana E, García-Garibay M, Gómez-Ruiz L (1999) Dissolved oxygen threshold for the repression of endo-polygalacturonase production by Kluyveromyces marxianus. Proc Biochem 34:621–624Google Scholar
  61. Das S, Kellermann E, Hollenberg CP (1984) Transformation of Kluyveromyces fragilis. J Bacteriol 158:1165–1167Google Scholar
  62. de Bruijne AW, Schuddemat J, van den Broek PJA, van Steveninck J (1988) Regulation of sugar transport systems of Kluyveromyces marxianus: the role of carbohydrates and their catabolism. Biochim Biophys Acta 939:569–576Google Scholar
  63. de Morais MA Jr (2003) The NADP+-dependent glutamate dehydrogenase of the yeast Kluyveromyces marxianus responds to nitrogen repression similarly to Saccharomyces cerevisiae. Braz J Microbiol 34:334–338Google Scholar
  64. de Sánchez SB, Castillo FJ (1980) Effect of pH on the growth of Kluyveromyces fragilis on deproteinized whey. Acta Cient Venez 31:24–26Google Scholar
  65. Donaghy JA, McKay AM (1994) The use of K1uvveromyces fragilis for the extraction of orange peel pectins. J Appl Bacteriol 76:506–510Google Scholar
  66. Dujon B, Sherman D, Fischer G et al (2004) Genome evolution in yeasts. Nature 430:35–44Google Scholar
  67. Duvnjak Z, Houle C, Mok KL (1987) Production of ethanol and biomass from various carbohydrates by Kluyveromyces fragilis. Biotechnol Lett 9:343–346Google Scholar
  68. Eraso P, Gancedo JM (1984) Catabolite repression in yeasts is not associated with low levels of cAMP. Eur J Biochem 141:195–198Google Scholar
  69. Etschmann MMW, Schrader J (2006) An aqueous-organic two-phase bioprocess for efficient production of the natural aroma chemicals 2-phenylethanol and 2-phenylethylacetate with yeast. Appl Microbiol Biotechnol 71:440–443Google Scholar
  70. Etschmann MMW, Bluemke W, Sell D, Schrader J (2002) Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol 59:1–8Google Scholar
  71. Etschmann MMW, Sell D, Schrader J (2004) Medium optimization for the production of the aroma compound 2-phenylethanol using a genetic algorithm. J Mol Catal B: Enzym 29:187–193Google Scholar
  72. Fabre CE, Duviau VJ, Blanc PJ, Goma G (1995) Identification of volatile flavour compounds obtained in culture of Kluyveromyces marxianus. Biotechnol Lett 17:1207–1212Google Scholar
  73. Fabre CE, Blanc PJ, Goma G (1998) Production of 2-phenylethyl alcohol by Kluyveromyces marxianus. Biotechnol Prog 14:270–274Google Scholar
  74. Falcone C, Saliola M, Chen XJ, Frontali L, Fukuhara H (1986) Analysis of a 1.6-micron circular plasmid from the yeast Kluyveromyces drosophilarum: structure and molecular dimorphism. Plasmid 15:248–252Google Scholar
  75. Ferguson P, Mulholland H, Barron N, Brady D, McHale AP (1998) Sucrose-supplemented distillery spent-wash as a medium for production of ethanol at 45°C by free and alginate-immobilized preparations of Kluyveromyces marxianus IMB3. Bioproc Eng 18:257–259Google Scholar
  76. Fernanda R, Sa-Correia I (1992) Ethanol tolerance and activity of plasma membrane ATPase in Kluyveromyces marxianus and Saccharomyces cerevisiae. Enzyme Microb Technol 14:23–27Google Scholar
  77. Fernandes PA, Keen JN, Findlay JBC, Moradas-Ferreira PA (1992) Protein homologous to glyceraldehyde-3-phosphate dehydrogenase is induced in the cell wall of a flocculant Kluyveromyces marxianus. Biochim Biophys Acta 1159:67–73Google Scholar
  78. Fernandes PA, Sousa M, Moradas-Ferreira P (1993) Flocculation of Kluyveromyces marxianus is induced by a temperature upshift. Yeast 9:859–866Google Scholar
  79. Fernandes PA, Sena-Esteves M, Moradas-Ferreira P (1995) Characterization of the glyceraldehyde-3-phosphate dehydrogenase gene family from Kluyveromyces marxianus - polymerase chain reaction single-strand conformation polymorphism as a tool for the study of multigenic families. Yeast 11:725–733Google Scholar
  80. Ferrari MD, Loperena L, Varela H (1994) Ethanol production from concentrated whey permeate using a fed-batch culture of Kluyveromyces fragilis. Biotechnol Lett 16:205–210Google Scholar
  81. Fiedurek J, Szczodrak J (1994) Selection of strain, culture conditions and extraction procedures for optimum production of b-galactosidase from Kluyveromyces fragilis. Acta Microbiol Pol 43:57–65Google Scholar
  82. Fonseca A, Spencer-Martins I, van Uden N (1991) Transport of lactic acid in Kluyveromyces marxianus: evidence for a monocarboxylate uniport. Yeast 7:775–780Google Scholar
  83. Fonseca GG, Gombert AK, Heinzle E, Wittmann C (2007) Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Res 7:422–435Google Scholar
  84. Fukuhara H (2006) Kluyveromyces lactis - A retrospective. FEMS Yeast Res 6:323–324Google Scholar
  85. Furlan SA, Schneider ALS, Merkle R, Carvalho-Jonas MD, Jonas R (2000) Formulation of a lactose-free, low-cost culture medium for the production of b-D-galactosidase by Kluyveromyces marxianus. Biotechnol Lett 22:589–593Google Scholar
  86. Garcia-Garibay M, Gómez-Ruiz L, Bárzana E (1987a) Studies on the simultaneous production of single-cell protein and endo-polygalacturonase from Kluyveromyces fragilis. Biotechnol Lett 9:411–416Google Scholar
  87. Garcia-Garibay M, Torres J, López-Munguía-Canales A, Casas LT (1987b) Influence of oxygen transfer rate on b-galactosidase production from Kluyveromyces marxianus. Biotechnol Lett 9:417–420Google Scholar
  88. Gasnier B (1987) Characterization of low- and high-affinity glucose transports in the yeast Kluyveromyces marxianus. Biochim Biophys Acta 903:425–433Google Scholar
  89. Gellissen G, Hollenberg CP (1997) Application of yeasts in gene expression studies: A comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene 190:87–97Google Scholar
  90. Ghaly AE, Singh RK (1989) Pollution potential reduction of cheese whey through yeast fermentation. Appl Biochem Biotechnol 22:181–203Google Scholar
  91. Ghaly AE, Kamal M (2004) Submerged yeast fermentation of acid cheese whey for protein production and pollution potential reduction. Water Res 38:631–644Google Scholar
  92. Giec A, Kosikowski FV (1992) Activity of lactose fermenting yeasts in producing biomass from concentrated whey permeates. J Food Sci 47:1892–1894Google Scholar
  93. Gonçalves JA, Castillo FJ (1982) Partial Purification and characterization of b-D-galactosidase from Kluyverornyces rnarxianus. J Dairy Sci 65:2088–2094Google Scholar
  94. Gough S, McHale AP (1998) Continuous ethanol production from molasses at 45°C using alginate-immobilized Kluyveromyces marxianus IMB3 in a continuous-flow bioreactor. Bioproc Eng 19:33–36Google Scholar
  95. Gough S, Flynn O, Hack CJ, Marchant R (1996) Fermentation of molasses using a thermotolerant yeast, Kluyveromyces marxianus IMB3: simplex optimization of media supplements. Appl Microbiol Biotechnol 46:187–190Google Scholar
  96. Gough S, Brady D, Nigam P, Marchant R, McHale AP (1997) Production of ethanol from molasses at 45°C using alginate-immobilized Kluyveromyces marxianus IMB3. Bioproc Eng 16:389–392Google Scholar
  97. Gough S, Barron N, Zubov AL, Lozinsky VI, McHale AP (1998) Production of ethanol from molasses at 45°C using Kluyveromyces marxianus IMB3 immobilized in calcium alginate gels and poly(vinyl alcohol) cryogel. Bioproc Eng 19:87–90Google Scholar
  98. Grootwassink JWD, Hewitt GM (1983) Inducible and constitutive formation of b-fructofuranosidase (inulase) in batch and continuous cultures of the yeast Kluyveromyces marxianus. J Gen Microbiol 129:31–41Google Scholar
  99. Grubb CF, Mawson AJ (1993) Effects of elevated solute concentrations on the fermentation of lactose by Kluyveromyces marxianus Y-113. Biotechnol Lett 15:621–626Google Scholar
  100. Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553Google Scholar
  101. Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524Google Scholar
  102. Hack CJ, Banat IM, Singh D, Marchant R (1994) Ethanol production by a strain of Kluyveromyces marxianus at elevated temperatures in various bioreactor configurations. In: Proceedings of Conference on Fermentation Physiology, Pub. Institution of Chemical Engineers, Brighton, pp 7–9Google Scholar
  103. Hacking AJ, Taylor IWF, Hanas CM (1984) Selection of yeasts able to produce ethanol from glucose at 40°C. Appl Microbiol Biotechnol 19:361–363Google Scholar
  104. Hahn-Hägerdal B (1985) Comparison between immobilized Kluyveromyces fragilis and Saccharomyces cerevisiae coimmobilized with b-galactosidase, with respect to continuous ethanol production from concentrated whey permeate. Biotechnol Bioeng 27:914–916Google Scholar
  105. Harden TJ (1996) The reduction of BOD and production of biomass from acid whey by Kluyveromyces marxianus. Food Aust 48:456–457Google Scholar
  106. Harsa S, Zaror CA, Pyle DL (1993) Production of polygalacturonases from Kluyveromyces marxianus fermentation—preliminary process design and economics. Proc Biochem 28:187–195Google Scholar
  107. Hashida-Okado T, Ogawa A, Kato I, Takesako K (1998) Transformation system for prototrophic industrial yeasts using the AUR1 gene as a dominant selection marker. FEBS Lett 425:117–122Google Scholar
  108. Hensing M, Vrouwenvelder H, Hellinga C, Baartmans R, van Dijken JP (1994) Production of extracellular inulinase in high-cell-density fed-batch cultures of Kluyveromyces marxianus. Appl Microbiol Biotechnol 42:516–521Google Scholar
  109. Hensing MC, Rouwenhorst RJ, Heijnen JJ, van Dijken JP, Pronk JT (1995) Physiological and technological aspects of large-scale heterologous-protein production with yeasts. Antonie van Leeuwenhoek 67:261–279Google Scholar
  110. Holloway P, Subden RE (1993) The isolation and nucleotide sequence of the pyruvate decarboxylase gene from Kluyveromyces marxianus. Curr Genet 24:274–277Google Scholar
  111. Hong J, Wang Y, Kumagai H, Tamaki H (2007) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130:114–123Google Scholar
  112. Hughes DB, Tudrosaen NJ, Moye CJ (1984) The effect of temperature on the kinectics of ethanol production by a thermotolerant strain of Kluyveromyces marxianus. Biotechnol Lett 6:1–6Google Scholar
  113. Huo K, Li Y (1995) Cloning and expression of Kluyveromyces fragilis LAC4 gene. Sci China B 38:1332–1340Google Scholar
  114. Iborra F (1993) High efficiency transformation of Kluyveromyces marxianus by a replicative plasmid. Curr Genet 24:181–183Google Scholar
  115. Iborra F, Ball MM (1994) Kluyveromyces marxianus small DNA fragments contain both autonomous replicative and centromeric elements that also function in Kluyveromyces lactis. Yeast 10:1621–1629Google Scholar
  116. Isenschmid A, Marison IW, von Stockar U (1995) The influence of pressure and temperature of compressed CO2 on the survival of yeast cells. J Biotechnol 39:229–237Google Scholar
  117. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168Google Scholar
  118. Itoh T, Susuki M, Adachi S (1982) Production of b-galactosidase from lactose-fermenting yeasts. Agric Biol Chem 46:899–904Google Scholar
  119. Jia J, Wheals A (2000) Endopolygalacturonase genes and enzymes from Saccharomyces cerevisiae and Kluyveromyces marxianus. Curr Genet 38:264–270Google Scholar
  120. Jolivet P, Bergeron E, Benyair H, Meunier JC (2001) Characterization of major protein phosphatases from selected species of Kluyveromyces. Comparison with protein phosphatases from Yarrowia lipolytica. Can J Microbiol 47:861–870Google Scholar
  121. Jones TD, Havard JM, Daugulis AJ (1993) Ethanol production from lactose by extractive fermentation. Biotechnol Lett 15:871–876Google Scholar
  122. Kádár ZS, Szengyel ZS, Réczey K (2004) Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crops Prod 20:103–110Google Scholar
  123. Kataoka M, Kotaka A, Thiwthong R, Wada M, Nakamori S, Shimizu S (2004) Cloning and overexpression of the old yellow enzyme gene of Candida macedoniensis, and its application to the production of a chiral compound. J Biotechnol 114:1–9Google Scholar
  124. Kiers J, Zeeman AM, Luttik M, Thiele C, Castrillo JI, Steensma HY, van Dijken JP, Pronk JT (1998) Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast 14:459–469Google Scholar
  125. Kim WH, Chung JH, Back JH, Choi J, Cha JH, Koh HY, Han YS (2003) Molecular cloning and characterization of an NADPH quinone oxidoreductase from Kluyveromyces marxianus. J Biochem Mol Biol 36:442–449Google Scholar
  126. Kreger-van Rij NJW (1984) The yeasts: a taxonomic study, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  127. Künkel W, May R (1976) Alcohol dehydrogenase (ADH) in yeast cells. I. Cytoplasmic, mitochondrial and nuclear ADH in Saccharomyces carlsbergensis and Kluyveromyces fragilis. Z Allg Mikrobiol 16:529–536Google Scholar
  128. Kurtzman CP (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res 4:233–245Google Scholar
  129. Kurtzman CP, Fell JW (eds) (1998) The yeasts: a taxonomic study, 4th edn. Elsevier, AmsterdamGoogle Scholar
  130. Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3:417–432Google Scholar
  131. Lachance MA (1998) Kluyveromyces van der Walt emend. van der Walt. In: Kurtzman CP, Fell JW (eds) The yeasts: a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 227–247Google Scholar
  132. Lachance MA (2007) Current status of Kluyveromyces systematics. FEMS Yeast Res 7:642–645Google Scholar
  133. Ladrière JM, Delcour J, Vandenhaute J (1993) Sequence of a gene coding for a cytoplasmic alcohol dehydrogenase from Kluyveromyces marxianus ATCC 12424. Biochim Biophys Acta 1173:99–101Google Scholar
  134. Ladrière JM, Georis I, Guerineau M, Vandenhaute J (2000) Kluyveromyces marxianus exhibits an ancestral Saccharomyces cerevisiae genome organization downstream of ADH2. Gene 255:83–91Google Scholar
  135. Laloux O, Cassart JP, Delcour J, van Beeumen J, Vandenhaute J (1991) Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Lett 289:64–68Google Scholar
  136. Leclerc M, Chemardin P, Arnaud A, Ratomahenina R, Galzy P, Gerbaud C, Raynal A, Guérineau M (1987) Comparison of the properties of the purified beta-glucosidase from the transformed strain of Saccharomyces cerevisiae TYKF2 with that of the donor strain Kluyveromyces fragilis Y610. Biotechnol Appl Biochem 9:410–422Google Scholar
  137. Leclercq-Perlat MN, Corrieu G, Spinnler HE (2004) Comparison of volatile compounds produced in model cheese medium deacidified by Debaryomyces hansenii or Kluyveromyces marxianus. J Dairy Sci 87:1545–1550CrossRefGoogle Scholar
  138. Lim J, Yamasaki Y, Suzuki Y, Ozawa J (1980) Multiple forms of endo-polygalacturonase from Saccharomyces fragilis. Agric Biol Chem 44:473–480Google Scholar
  139. Llorente B, Malpertuy A, Blandin G, Artiguenave F, Wincker P, Dujon B (2000) Genomic exploration of the hemiascomycetous yeasts: 12. Kluyveromyces marxianus var. marxianus. FEBS Lett 487:71–75Google Scholar
  140. Lodder J (1970) The yeasts: a taxonomic study, 2nd edn. NHPC, AmsterdamGoogle Scholar
  141. Lodder J, Kreger-van Rij NJW (1952) The yeasts: a taxonomic study. NHPC, AmsterdamGoogle Scholar
  142. Love G, Nigam P, Barron N, Singh D, Marchant R, McHale AP (1996) Ethanol production at 45°C using preparations of Kluyveromyces marxianus IMB3 immobilized in calcium alginate and kissiris. Bioproc Eng 15:275–277Google Scholar
  143. Love G, Gough S, Brady D, Barron N, Nigam P, Singh D, Marchant R, McHale AP (1998) Continuous ethanol fermentation at 45°C using Kluyveromyces marxianus IMB3. Immobilized in calcium alginate and kissiris. Bioproc Eng 18:187–189Google Scholar
  144. Lukondeh T, Ashbolt NJ, Rogers PL (2003a) Evaluation of Kluyveromyces marxianus as a source of yeast autolysates. J Ind Microbiol Biotechnol 30:52–56Google Scholar
  145. Lukondeh T, Ashbolt NJ, Rogers PL (2003b) Evaluation of Kluyveromyces marxianus FII 510700 grown on a lactose-based medium as a source of a natural bioemulsifier. J Ind Microbiol Biotechnol 30:715–720Google Scholar
  146. Lukondeh T, Ashbolt NJ, Rogers PL (2003c) Confirmation of an alkali-insoluble glucans from Kluyveromyces marxianus cultivated on a lactose-based medium. World J Microbiol Biotechnol 19:349–355Google Scholar
  147. Mahoney RR, Nickerson TA, Whitaker JR (1975) Selection of strain, growth conditions and extraction procedures for optimum production of lactase from Kluyveromyces fragilis. J Dairy Sci 58:1620–1629Google Scholar
  148. Majumdar S, Bhattacharjee H, Bhattacharyya D, Bhaduri A (1998) UDP-galactose 4-epimerase from Kluyveromyces fragilis: reconstitution of holoenzyme structure after dissociation with parachloromercuribenzoate. Eur J Biochem 257:427–433Google Scholar
  149. Margaritis A, Bajpai P (1982) Direct fermentation of D-xylose to ethanol by Kluyveromyces marxianus strains. Appl Environ Microbiol 44:1039–1041Google Scholar
  150. Margaritis A, Bajpai P (1983) Effect of sugar concentration in Jerusalem artichoke extract on Kluyveromyces marxianus growth and ethanol production. Appl Environ Microbiol 45:723–725Google Scholar
  151. Martins DB, de Souza CG Jr, Simões DA, de Morais MA Jr (2002) The b-galactosidase activity in Kluyveromyces marxianus CBS6556 decreases by high concentrations of galactose. Curr Microbiol 44:379–382Google Scholar
  152. Marwaha SS, Kennedy JF, Sehgal VK (1988) Simulation of process conditions of continuous ethanol fermentation of whey permeate using alginate entrapped Kluyveromyces marxianus NCYC-179 cells in a packed-bed reactor system. Proc Biochem 23:17–22Google Scholar
  153. Medeiros ABP, Pandey A, Freitas RJS, Christen P, Soccol CR (2000) Optimization of the production of aroma compounds by Kluyveromyces marxianus in solid-state fermentation using factorial design and response surface methodology. Biochem Eng J 6:33–39Google Scholar
  154. Medeiros ABP, Pandey A, Christen P, Fontoura PSG, de Freitas RJS, Soccol CR (2001) Aroma compounds produced by Kluyveromyces marxianus in solid state fermentation on a packed bed column bioreactor. World J Microbiol Biotechnol 17:767–771Google Scholar
  155. Meilhoc E, Masson JM, Teissié J (1990) High efficiency transformation of intact yeast cells by electric field pulses. J Biotechnol 8:223–227Google Scholar
  156. Molnár O, Prillinger H, Lopandic K, Weigang F, Staudacher E (1996) Analysis of coenzyme Q systems, monosaccharide patterns of purified cell walls, and RAPD-PCR patterns in the genus Kluyveromyces. Antonie van Leeuwenhoek 70:67–78Google Scholar
  157. Mukherji S, Bhaduri A (1992) An essential histidine residue for the activity of UDPglucose 4-epimerase from Kluyveromyces fragilis. J Biol Chem 267:11709–11713Google Scholar
  158. Neves L, Oliveira R, Lucas C (2004) Yeast orthologues associated with glycerol transport and metabolism. FEMS Yeast Res 5:51–62Google Scholar
  159. Nguyen TH, Fleet GH, Rogers PL (1998) Composition of the cell walls of several yeast species. Appl Microbiol Biotechnol 50:206–212Google Scholar
  160. Nigam P, Banat IM, Singh D, McHale AP, Marchant R (1997) Continuous ethanol production by thermotolerant Kluyveromyces marxianus IMB3 yeast immobilized on mineral kissiris at 45°C. World J Microbiol Biotechnol 13:283–288Google Scholar
  161. Nilsson U, Barron N, McHale L, McHale AP (1995) The effects of phosphoric and pretreatment on conversion of cellulose to ethanol at 45°C using the thermotolerant yeast Kluyveromyces marxianus IMB3. Biotechnol Lett 17:985–988Google Scholar
  162. Nolan AM, Barron N, Brady D, McAree T, Smith D, McHale L, McHale AP (1994) Ethanol production at 45°C by an alginate-immobilized strain of Kluyveromyces marxianus following growth on glucose-containing media. Biotechnol Lett 16:849–852Google Scholar
  163. Nunes MFA, Massaguer S, Alegre RM (1993) Produção e propriedades de b-galactosidase de Kluyveromyces marxianus NRRL Y-2415. Rev Farm Bioquim Univ S Paulo 29:25–30Google Scholar
  164. Oberyé EH, Maurer K, Mager WH, Planta RJ (1993) Structure of the ABF1-homologue from Kluyveromyces marxianus. Biochim Biophys Acta 1173:233–236Google Scholar
  165. O’Shea DG, Walsh PK (2000) The effect of culture conditions on the morphology of the dimorphic yeast Kluyveromyces marxianus var. marxianus NRRLy 2415: a study incorporating image analysis. Appl Microbiol Biotechnol 53:316–322Google Scholar
  166. Panuwatsuk W, da Silva NA (2002) Evaluation of pKD1-based plasmid systems for heterologous protein production in Kluyveromyces lactis. Appl Microbiol Biotechnol 58:195–201Google Scholar
  167. Parekh S, Margaritis A (1985) Inulinase (b-fructofuranosidase) production by Kluyveromyces marxianus in batch culture. Appl Microbiol Biotechnol 22:446–448Google Scholar
  168. Pecota DC, da Silva NA (2005) Evaluation of the tetracycline promoter system for regulated gene expression in Kluyveromyces marxianus. Biotechnol Bioeng 92:117–123Google Scholar
  169. Pecota DC, Rajgarhia V, da Silva NA (2007) Sequential gene integration for the engineering of Kluyveromyces marxianus. J Biotechnol 127:408–416Google Scholar
  170. Penman CS, Duffus JH (1974) Ergosterol is the only sterol in Kluyveromyces fragilis. Antonie van Leeuwenhoek 40:529–531Google Scholar
  171. Pessoa Jr A, Vitolo M (1999) Inulinase from Kluyveromyces marxianus: culture medium composition and enzyme extraction. Braz J Chem Eng 16:237–245Google Scholar
  172. Pinheiro R, Belo I, Mota M (2000) Air pressure effects on biomass yield of two different Kluyveromyces strains. Enzyme Microb Technol 26:756–762Google Scholar
  173. Pinheiro R, Belo I, Mota M (2002) Oxidative stress response of Kluyveromyces marxianus to hydrogen peroxide, paraquat and pressure. Appl Microbiol Biotechnol 58:842–847Google Scholar
  174. Porro D, Sauer M, Branduardi P, Mattanovich D (2005) Recombinant protein production in yeasts. Mol Biotechnol 31:245–259Google Scholar
  175. Postma E, van der Broek PJA (1990) Continuous-culture study of the regutation of glucose and fructose transport in Kluyveromyces marxianus CBS 6556. J Bacteriology 172:2871–2876Google Scholar
  176. Prudêncio C, Sansonetty F, Sousa MJ, Côrte-Real M, Leão C (2000) Rapid detection of efflux pumps and their relation with drug resistance in yeast cells. Cytometry 39:26–35Google Scholar
  177. Queirós O, Casal M, Althoff S, Moradas-Ferreira P, Leão C (1998) Isolation and characterization of Kluyveromyces marxianus mutants deficient in malate transport. Yeast 14:401–407Google Scholar
  178. Rajoka MI, Khan S, Shahid R (2003) Kinetics and regulation studies of the production of b-galactosidase from Kluyveromyces marxianus grown on different substrates. Food Technol Biotechnol 41:315–320Google Scholar
  179. Rajoka MI, Latif F, Khan S, Shahid R (2004) Kinetics of improved productivity of b-galactosidase by a cycloheximide-resistant mutant of Kluyveromyces marxianus. Biotechnol Lett 26:741–746Google Scholar
  180. Ramirez-Zavala B, Mercado-Flores Y, Hernandez-Rodriguez C, Villa-Tanaca L (2004a) Purification and characterization of a lysine aminopeptidase from Kluyveromyces marxianus. FEMS Microbiol Lett 235:369–375Google Scholar
  181. Ramirez-Zavala B, Mercado-Flores Y, Hernandez-Rodriguez C, Villa-Tanaca L (2004b) Purification and characterization of a serine carboxypeptidase from Kluyveromyces marxianus. Int J Food Microbiol 91:245–252Google Scholar
  182. Ray S, Mukherji S, Bhaduri A (1995) Two tryptophans at the active site of UDP-glucose 4-epimerase from Kluyveromyces fragilis. J Biol Chem 270:11383–11390Google Scholar
  183. Raynal A, Guerineau M (1984) Cloning and expression of the structural gene for b-glucosidase of Kluyveromyces fragilis in Escherichia coli and Saccharomyces cerevisiae. Mol Gen Genet 195:108–115Google Scholar
  184. Raynal A, Gerbaud C, Francingues MC, Guerineau M (1987) Sequence and transcription of the b-glucosidase gene of Kluyveromyces fragilis cloned in Saccharomyces cerevisiae. Curr Genet 12:175–184Google Scholar
  185. Rech R, Cassini CF, Secchi AR, Ayub MAZ (1999) Utilization of protein-hydrolyzed chesse whey for the production of b-galactosidase by Kluyveromyces marxianus. J Ind Microbiol Biotechnol 23:91–96Google Scholar
  186. Ribeiro O, Gombert AK, Teixeira JA, Domingues L (2007) Application of the Cre-loxP system for multiple gene disruption in the yeast Kluyveromyces marxianus. J Biotechnol 131:20–26Google Scholar
  187. Riordan C, Love G, Barron N, Nigam P, Marchant R, McHale L, McHale AP (1996) Production of ethanol from sucrose at 45°C by alginate-immobilized preparations of the thermotolerant yeast strain Kluyveromyces marxianus IMB3. Biores Technol 55:171–173Google Scholar
  188. Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488Google Scholar
  189. Rosa FM, Sa-Correia I (1992) Ethanol tolerance and activity of plasma membrane ATPase in Kluyveromyces marxianus and Saccharomyces cerevisiae. Enzyme Microb Technol 14:23–27Google Scholar
  190. Rouwenhorst RJ, Visser LE, van der Baan AA, Scheffers WA, van Dijken JP (1988) Production, distribution, and kinetic properties of inulinase in continuous culture of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol 54:1131–1137Google Scholar
  191. Rouwenhorst RJ, Hensing M, Verbakel J, Scheffers WA, van Dijken JP (1990a) Structure and properties of the extracellular inulinase of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol 56:3337–3345Google Scholar
  192. Rouwenhorst RJ, Ritmeester WS, Scheffers WA, van Dijken JP (1990b) Localization of inulinase and invertase in Kluyveromyces species. Appl Environ Microbiol 56:3329–3336Google Scholar
  193. Sakanaka K, Yan W, Kishida M, Sakai T (1996) Breeding a fermentative yeast at high temperature using protoplast fusion. J Ferment Bioeng 81:104–108Google Scholar
  194. Schaffrath R, Breunig KD (2000) Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fung Genet Biol 30:173–190Google Scholar
  195. Scharpf LG, Seitz EW, Morris JA, Farbood MI (1986) Generation of flavor and odor compounds through fermentation processes. In: Parliament TH, Croteau R (eds) Biogeneration of aroma, American Chemical Society, Washington, DC, vol. 317, pp 323–346Google Scholar
  196. Schultz N, Chang L, Hauck A, Reuss M, Syldatk C (2006) Microbial production of single-cell protein from deproteinized whey concentrates. Appl Microbiol Biotechnol 69:515–520Google Scholar
  197. Schwan RF, Rose AH (1994) Polygalacturonase production by Kluyveromyces marxianus: effect of medium composition. J Appl Bacteriol 76:62–67Google Scholar
  198. Schwan RF, Cooper RM, Wheals AE (1997) Endopolygalacturonase secretion by Kluyveromyces marxianus and other cocoa pulp-degrading yeasts. Enzyme Microb Technol 21:234–244Google Scholar
  199. Serrat M, Bermudez RC, Villa TG (2004) Polygalacturonase and ethanol production in Kluyveromyces marxianus—potential use of polygalacturonase in foodstuffs. Appl Biochem Biotechnol 117:49–64Google Scholar
  200. Šiekštelė R, Bartkevičiūtė D, Sasnauskas K (1999) Cloning, targeted disruption and heterologous expression of the Kluyveromyces marxianus endopolygalacturonase gene (EPG1). Yeast 15:311–322Google Scholar
  201. Skountzou P, Soupioni M, Bekatorou A, Kanellaki M, Koutinas AA, Marchant R, Banat IM (2003) Lead(II) uptake during baker’s yeast production by aerobic fermentation of molasses. Proc Biochem 38:1479–1482Google Scholar
  202. Sonawat HM, Agrawal A, Dutta SM (1981) Production of b-galactosidase from Kluyveromyces fragilis grown on whey. Folia Microbiol 26:370–376Google Scholar
  203. Souciet J-L, Artiguenave MAF, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P et al (2000) Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Letters 487:3–12Google Scholar
  204. Stambuk BU, Franden MA, Singh A, Zhang M (2003) D-Xylose transport by Candida succiphila and Kluyveromyces marxianus. Appl Biochem Biotechnol 108:255–263Google Scholar
  205. Steensma HY, Ter Linde JJ (2001) Plasmids with the Cre-recombinase and the dominant nat marker, suitable for use in prototrophic strains of Saccharomyces cerevisiae and Kluyveromyces lactis. Yeast 18:469–472Google Scholar
  206. Steensma HY, de Jongh FCM, Linnekamp M (1988) The use of electrophoretic karyotypes in the classification of yeasts: Kluyveromyces marxianus and K. lactis. Curr Genet 14:311–317Google Scholar
  207. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic Engineering Principles and Methodologies. Academic Press, San DiegoGoogle Scholar
  208. Sukroongreung S, Schappert KT, Khachatourians GG (1984) Survey of sensitivity of twelve yeast genera toward T-2 toxin. Appl Environ Microbiol 48:416–419Google Scholar
  209. Tin CSF, Mawson AJ (1993) Ethanol production from whey in a membrane recycle bioreactor. Proc Biochem 28:217–221Google Scholar
  210. Ternan NG, McMullan G (2000) The utilization of 4-aminobutylphosphonate as sole nitrogen source by a strain of Kluuyveromyces fragilis. FEMS Microbiol Lett 184:237–240Google Scholar
  211. Ternan NG, McMullan G (2002) Iminodiacetate and nitrilotriacetate degradation by Kluyveromyces marxianus IMB3. Biochem Biophys Res Comm 290:802–805Google Scholar
  212. Toyoda Y, Sy J (1984) Purification and phosphorylation of fructose-1,6-bisphosphatase from Kluyveromyces fragilis. J Biol Chem 259:8718–8723Google Scholar
  213. van den Berg JA, van der Laken KJ, van Ooyen AJJ, Renniers TCHM, Rietveld K et al (1990) Kluyveromyces as a host for heterologous gene expression. Expression and secretion of prochymosin. Bio/Techno 8:135–139Google Scholar
  214. van den Broek PJ, de Bruijne AW, van Steveninck J (1987) The role of ATP in the control of H+-galactoside symport in the yeast Kluyveromyces marxianus. Biochem J 242:729–734Google Scholar
  215. van der Walt JP (1956) Kluyveromyces- a new yeast genus of the Endomycetales. Antonie van Leeuwenhoek 22:265–272Google Scholar
  216. van der Walt JP (1970) Kluyveromyces van der Walt emend. van der Walt. In: Lodder J (ed) The yeasts: a taxonomic study, 2nd edn. NHPC, Amsterdam, pp 316–378Google Scholar
  217. van der Walt JP, Johannsen E (1984) Kluyveromyces van der Walt emend. van der Walt. In: Kreger-van Rij NJW (ed) The yeasts: a taxonomic study, 3rd edn. Elsevier, Amsterdam, pp 224–251Google Scholar
  218. van Dijken JP, Weusthuis RA, Pronk JT (1993) Kinetics of growth and sugar consumption in yeasts. Antonie van Leeuwenhoek 63:343–352Google Scholar
  219. van Dijken JP, Bauer J, Brambilla L et al (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enz Microb Technol 26:706–714Google Scholar
  220. van Leeuwen CC, Postma E, van den Broek PJ, van Steveninck J (1991) Proton-motive force-driven D-galactose transport in plasma membrane vesicles from the yeast Kluyveromyces marxianus. J Biol Chem 266:12146–12151Google Scholar
  221. van Ooyen AJ, Dekker P, Huang M, Olsthoorn MM, Jacobs DI, Colussi PA, Taron CH (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6:381–392Google Scholar
  222. van Urk H, Voll WSL, Scheffers WA, van Dijken JP (1990) Transient-state analyses of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Appl Environ Microbiol 56:281–287Google Scholar
  223. Verduyn C, Postma E, Scheffers WA, van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517Google Scholar
  224. Verzotti E, Geymonat M, Valetti F, Lanzetti L, Giunta C (1994) In the budding yeast Kluyveromyces marxianus, adenylate cyclase is regulated by Ras protein(s) in vitro. Yeast 10:993–1001Google Scholar
  225. Viegas CA, Rosa MF, Sá-Correia I, Novais JM (1989) Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation. Appl Environ Microbiol 55:21–28Google Scholar
  226. Visser W, Scheffers WA, Batenburg-van der Vegte WH, van Dijken JP (1990) Oxygen requirements of yeasts. Appl Environ Microbiol 56:3785–3792Google Scholar
  227. Yoda K, Ko JH, Nagamatsu T, Lin Y, Kaibara C, Kawada T, Tomishige N, Hashimoto H, Noda Y, Yamasaki M (2000) Molecular characterization of a novel yeast cell-wall acid phosphatase cloned from Kluyveromyces marxianus. Biosci Biotechnol Biochem 64:142–148Google Scholar
  228. Ward C, Nolan AM, O’Hanlon F, McAree T, Barron N, McHale L, McHale AP (1995) Production of ethanol at 45°C on starch-containing media by mixed cultures of the thermotolerant, ethanol-producing yeast Kluyveromyces marxianus IMB3 and the thermophilic filamentous fungus Talaromyces emersonii CBS 813.70. Appl Microbiol Biotechnol 43:408–411Google Scholar
  229. Wésolowski-Louvel M, Breunig KD, Fukuhara H (1996) Kluyveromyces lactis: genetics, biochemistry and molecular biology of non-conventional yeast. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  230. Welsh FW, Murray WD, Williams RE (1989) Microbiological and enzymatic production of flavor and fragrance chemicals. Crit Rev Biotechnol 9:105–169Google Scholar
  231. Wimborne MP, Rickard PAD (1978) Pectinolytic activity of Saccharomyces fragilis cultured in controlled environments. Biotechnol Bioeng 20:231–242Google Scholar
  232. Wittmann C, Hans M, Bluemke W (2002) Metabolic physiology of aroma-producing Kluyveromyces marxianus. Yeast 19:1351–1363Google Scholar
  233. Wolf K, Breunig K, Barth G (eds) (2003) Non-conventional yeasts in genetics, biochemistry and biotechnology: practical protocols. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  234. Workman WE, Day DF (1984) The cell wall-associated inulinase of Kluyveromyces fragilis. Antonie van Leeuwenhoek 50:349–353Google Scholar
  235. Yoshida Y, Yokoi W, Wada Y, Ohishi K, Ito M, Sawada H (2004) Potent hypocholesterolemic activity of the yeast Kluyveromyces marxianus YIT 8292 in rats fed a high cholesterol diet. Biosci Biotechnol Biochem 68:1185–1192Google Scholar
  236. Yoshida Y, Yokoi W, Ohishi K, Ito M, Naito E, Sawada H (2005) Effects of the cell wall of Kluyveromyces marxianus YIT 8292 on the plasma cholesterol and fecal sterol excretion in rats fed on a high-cholesterol diet. Biosci Biotechnol Biochem 69:714–723Google Scholar
  237. Zhang J, Yuan H, Wen T, Xu F, Di Y, Huo K, Li YY (2003) Cloning of the KcURA3 gene and development of a transformation system for Kluyveromyces cicerisporus. Appl Microbiol Biotechnol 62:387–391Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Gustavo Graciano Fonseca
    • 1
    • 2
  • Elmar Heinzle
    • 2
  • Christoph Wittmann
    • 2
  • Andreas K. Gombert
    • 1
    • 3
    Email author
  1. 1.Department of Chemical EngineeringUniversity of São PauloSão PauloBrazil
  2. 2.Biochemical Engineering InstituteSaarland UniversitySaarbrückenGermany
  3. 3.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations