Applied Microbiology and Biotechnology

, Volume 79, Issue 3, pp 471–479 | Cite as

Corynebacterium glutamicum tailored for high-yield L-valine production

  • Bastian Blombach
  • Mark E. Schreiner
  • Tobias Bartek
  • Marco Oldiges
  • Bernhard J. EikmannsEmail author
Applied Genetics and Molecular Biotechnology


We recently engineered the wild type of Corynebacterium glutamicum for the growth-decoupled production of L-valine from glucose by inactivation of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes, encoding the L-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. Based on the first generation of pyruvate-dehydrogenase-complex-deficient C. glutamicum strains, a second generation of high-yield L-valine producers was constructed by successive deletion of the genes encoding pyruvate:quinone oxidoreductase, phosphoglucose isomerase, and pyruvate carboxylase and overexpression of ilvBNCE. In fed-batch fermentations at high cell densities, the newly constructed strains produced up to 410 mM (48 g/l) L-valine, showed a maximum yield of 0.75 to 0.86 mol/mol (0.49 to 0.56 g/g) of glucose in the production phase and, in contrast to the first generation strains, excreted neither pyruvate nor any other by-product tested.


Corynebacterium glutamicum L-valine production Pyruvate dehydrogenase complex Pyruvate:quinone oxidoreductase Phosphoglucose isomerase Pyruvate carboxylase 



We thank Lothar Eggeling for providing plasmids pJC4ilvBNC, pJC4ilvBNCD, and pJC4ilvBNCE and Brigitte Bathe (Evonik Degussa) for providing plasmid pK18mobsacB pgidel. We are grateful to Andreas Karau and Robert Gerstmeir (Degussa AG) for valuable discussions. We thank Konstanze Fleischer for technical assistance. The support of the Fachagentur Nachwachsende Rohstoffe of the BMVEL (grant 04NR004/22000404) is gratefully acknowledged.


  1. Bartek T, Blombach B, Zönnchen E, Makus P, Wahl A, Lang S, Eikmanns BJ, Oldiges M (2008a) Importance of NADPH supply for improved L-valine formation based on stoichiometric modelling. Submitted to AMBGoogle Scholar
  2. Bartek T, Makus P, Klein B, Lang S, Oldiges M (2008b) Influence of L-isoleucine and pantothenate auxotrophy for l-valine formation in Corynebacterium glutamicum revisited by metabolome analyses. Bioprocess Biosyst Eng DOI  10.1007/s00449-008-0202-z
  3. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596CrossRefGoogle Scholar
  4. Bergmeyer HU (1983) Methods of enzymatic analysis vol. VI, 3rd edn. Verlag Chemie, Weinheim, pp 59–66Google Scholar
  5. Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ (2007a) Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol 76:615–623CrossRefGoogle Scholar
  6. Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ (2007b) L-Valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73:2079–2084CrossRefGoogle Scholar
  7. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145CrossRefGoogle Scholar
  8. Eggeling L (2001) Amino acids. In: Ratledge C, Kristiansen B (eds) Basic biotechnology. Cambridge University Press, London, pp 281–303Google Scholar
  9. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC, Boca RatonGoogle Scholar
  10. Eikmanns BJ, Thum-Schmitz N, Eggeling L, Lüdtke KU, Sahm H (1994) Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828CrossRefGoogle Scholar
  11. Eikmanns BJ, Rittmann D, Sahm H (1995) Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol 177:774–782Google Scholar
  12. Elisakova V, Patek M, Holatko J, Nesvera J, Leyval D, Goergen JL, Delaunay S (2005) Feedback-resistant acetohydroxyacid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71:207–213CrossRefGoogle Scholar
  13. Georgi T, Rittmann D, Wendisch VF (2005) Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng 7:291–301CrossRefGoogle Scholar
  14. Gourdon P, Baucher MF, Lindley ND, Guyonvarch A (2000) Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl Environ Microbiol 66:2981–2987CrossRefGoogle Scholar
  15. Hanahan D (1985) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580CrossRefGoogle Scholar
  16. Kabus A, Georgi T, Wendisch VF, Bott M (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine. Appl Microbiol Biotechnol 75:47–53CrossRefGoogle Scholar
  17. Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H (2003) Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine. Appl Environ Microbiol 69:2521–2532CrossRefGoogle Scholar
  18. Leuchtenberger W (1996) Amino acids—technical production and use. In: Rehm H-J, Reed G, Pühler A, Stadler P (eds) Biotechnology, vol. vol. 6. VCH, Weinheim, pp 465–502CrossRefGoogle Scholar
  19. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivates: current status and prospects. Appl Microbiol Biotechnol 69:1–8CrossRefGoogle Scholar
  20. Liebl W (1991) The genus Corynebacterium—nonmedical. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes, vol. 2, Springer, New York, pp 1157–1171Google Scholar
  21. Marienhagen J, Kennerknecht N, Sahm H, Eggeling L (2005) Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 187:7639–7646CrossRefGoogle Scholar
  22. Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49:111–129CrossRefGoogle Scholar
  23. Marx A, Striegel K, de Graaf AA, Eggeling L (1997) Response of central metabolism of Corynebacterium glutamicum to different flux burdens. Biotechnol Bioeng 56:168–180CrossRefGoogle Scholar
  24. Marx A, Eikmanns BJ, Sahm H, de Graaf AA, Eggeling L (1999) Response of central metabolism of Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab Eng 1:35–48CrossRefGoogle Scholar
  25. Marx A, Hans S, Mockel B, Bathe B, de Graaf AA (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104:185–197CrossRefGoogle Scholar
  26. Moritz B, Striegel K, de Graaf AA, Sahm H (2000) Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose pathway flux in vivo. Eur J Biochem 267:3442–3452CrossRefGoogle Scholar
  27. Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242:265–274CrossRefGoogle Scholar
  28. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico knockout simulation. Proc Natl Acad Sci U S A 104:7797–7802CrossRefGoogle Scholar
  29. Patek M (2007) Branched-chain amino acids. In: Steinbüchel A (ed) Microbiol monographs, vol. 5, Springer, Berlin/Heidelberg, pp 129–162Google Scholar
  30. Peters-Wendisch PG, Kreutzer C, Kalinowski J, Pátek M, Sahm H, Eikmanns BJ (1998) Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology 144:915–927Google Scholar
  31. Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300Google Scholar
  32. Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: L-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:2246–2250CrossRefGoogle Scholar
  33. Riedel C, Rittmann D, Dangel P, Möckel B, Sahm H, Eikmanns BJ (2001) Characterization, expression, and inactivation of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol 3:573–583Google Scholar
  34. Ruklisha M, Paegle L, Denina I (2007) L-Valine biosynthesis during batch and fed-batch cultivations of Corynebacterium glutamicum: relationship between changes in bacterial growth rate and intracellular metabolism. Process Biochem 42:634–640CrossRefGoogle Scholar
  35. Sahm H, Eggeling L (1999) D-Pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction. Appl Environ Microbiol 65:1973–1979Google Scholar
  36. Sambrook J, Russel DW, Irwin N, Janssen UA (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  37. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the E. coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73CrossRefGoogle Scholar
  38. Schreiner ME, Fiur D, Holátko J, Pátek M, Eikmanns BJ (2005) E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: Molecular analysis of the gene and phylogenetic aspects. J Bacteriol 187:6005–6018CrossRefGoogle Scholar
  39. Schreiner ME, Riedel C, Holatko J, Patek M, Eikmanns BJ (2006) Pyruvate:quinone oxidoreductase in Corynebacterium glutamicum: molecular analysis of the pqo gene, significance of the enzyme, and phylogenetic aspects. J Bacteriol 188:1341–1350CrossRefGoogle Scholar
  40. Takors R, Bathe B, Rieping M, Hans S, Kelle R, Huthmacher K (2007) Systems biology for industrial strains and fermentation processes—example: amino acids. J Biotechnol 129:181–190CrossRefGoogle Scholar
  41. van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogenic plasmid DNA. Appl Microbiol Biotechnol 52:541–545CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Bastian Blombach
    • 1
  • Mark E. Schreiner
    • 1
    • 3
  • Tobias Bartek
    • 2
  • Marco Oldiges
    • 2
  • Bernhard J. Eikmanns
    • 1
    Email author
  1. 1.Institute of Microbiology and BiotechnologyUniversity of UlmUlmGermany
  2. 2.Institute of Biotechnology 2Research Center JülichJülichGermany
  3. 3.R&D Women’s HealthEurope, Johnson & Johnson GmbHWuppertalGermany

Personalised recommendations