Skip to main content
Log in

Simultaneous biological removal of sulfur, nitrogen and carbon using EGSB reactor

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

High-rate biological conversion of sulfide and nitrate in synthetic wastewater to, respectively, elemental sulfur (S0) and nitrogen-containing gas (such as N2) was achieved in an expanded granular sludge bed (EGSB) reactor. A novel strategy was adopted to first cultivate mature granules using anaerobic sludge as seed sludge in sulfate-laden medium. The cultivated granules were then incubated in sulfide-laden medium to acclimate autotrophic denitrifiers. The incubated granules converted sulfide, nitrate, and acetate simultaneously in the same EGSB reactor to S0, N-containing gases and CO2 at loading rates of 3.0 kg S m−3 d−1, 1.45 kg N m−3 d−1, and 2.77 kg Ac m−1 d−1, respectively, and was not inhibited by sulfide concentrations up to 800 mg l−1. Effects of the C/N ratio on granule performance were identified. The granules cultivated in the sulfide-laden medium have Pseudomonas spp. and Azoarcus sp. presenting the heterotrophs and autotrophs that co-work in the high-rate EGSB-SDD (simultaneous desulfurization and denitrification) reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  CAS  Google Scholar 

  • Cadena F, Peters RW (1988) Evaluation of chemical oxidizer for hydrogen sulfide control. J Water Pollut Control Fed 60:1259–1263

    CAS  Google Scholar 

  • Cardoso RB, Sierra-Alvarez R, Rowlette P, Flores ER, Gomez J, Field JA (2006) Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol Bioeng 95:1148–1157

    Article  CAS  Google Scholar 

  • Flere JM, Zhang TC (1999) Nitrate removal with sulfur-limestone autotrophic denitrification process. J Environ Eng, 125:721–729

    Article  CAS  Google Scholar 

  • Furumai H, Tagui H, Fujita K (1996) Effects of pH and alkalinity on sulfur-denitrification in a biological granular filter. Water Sci Technol 34:355–362

    Article  CAS  Google Scholar 

  • Inagaki F, Takai K, Nealson KH, Horikoshi K (2004) Sulfurovum lithotrophicum gen. nov., sp nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from Okinawa Torugh hydrothermal sediments. Int J Syst Evol Mic 54:1477–1482

    Article  CAS  Google Scholar 

  • Kim EW, Bae JH (2000) Alkalinity requirements and the possibility of simultaneous heterotrophic denitrification during sulfur utilizing autotrophic denitrification. Water Sci Technol 42:233–238

    Article  CAS  Google Scholar 

  • Kim SY, Jung HJ, Kim KS, Kim IS (2004) Treatment of high nitrate-containing wastewaters by sequential heterotrophic and autotrophic denitrification. J Environ Eng 130:1475–1480

    Article  CAS  Google Scholar 

  • Maidak BL, Cole JR, Parker CT, Garrity GM, Larsen N, Li B, Lilburn TG, McCaughey MJ, Olsen GJ, Overbeek R, Pramanik S, Schmidt TM, Tiedje JM, Woese CR (1999) A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27:171–173

    Article  CAS  Google Scholar 

  • Manconi I, Carucci A, Lens P, Rossetti S (2006) Simultaneous biological of sulphide and nitrate by autotrophic denitrification in an acticated sludge system. Water Sci Technol 53:91–99

    Article  CAS  Google Scholar 

  • Oh SE, Yoo YB, Young JC, Kim IS (2001) Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions. J Biotechnol 92:1–8

    Article  CAS  Google Scholar 

  • Reyes-Avila J, Razo-Flores E, Gomez J (2004) Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Water Res 38:3313–3321

    Article  CAS  Google Scholar 

  • Rozanova EP, Nazina TN, Galushko AS (1988) Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov., sp. nov. Mikrobiologiya 57:634–641

    CAS  Google Scholar 

  • Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    Article  CAS  Google Scholar 

  • Show KY, Tay JH, Yang LM, Wang Y, Lua CH (2004) Effects of stressed loading on startup and granulation in upflow anaerobic sludge blanket reactors. J Environ Eng 130:743–750

    Article  CAS  Google Scholar 

  • Vaiopoulou E, Melidis P, Aivasidis A (2005) Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification. Water Res 39:4101–4109

    Article  CAS  Google Scholar 

  • Wang AJ, Du DZ, Ren NQ, van Groenestijn JW (2005) An innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrification. J Environ Sci Hlth A 40:1939–1949

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Nature Science Foundation of China (No. 50638020) and Ministry of Education of China (Development of Simutaneous desulfurization and denitrification process and the control strategy for high strength wastewater, New Century Distinguished young Scientist Supporting Plan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duu-Jong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Ren, N., Wang, A. et al. Simultaneous biological removal of sulfur, nitrogen and carbon using EGSB reactor. Appl Microbiol Biotechnol 78, 1057–1063 (2008). https://doi.org/10.1007/s00253-008-1396-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1396-3

Keywords

Navigation