Applied Microbiology and Biotechnology

, Volume 78, Issue 5, pp 853–862 | Cite as

Deletion of iscR stimulates recombinant clostridial Fe–Fe hydrogenase activity and H2-accumulation in Escherichia coli BL21(DE3)

  • M. Kalim Akhtar
  • Patrik R. JonesEmail author
Applied Microbial and Cell Physiology


Proteins that catalyze H2-pathways often contain iron–sulfur (Fe–S) clusters and are sensitive to O2. We tested whether deletion of the gene encoding the transcriptional negative regulator, IscR, could enhance the ability of Escherichia coli BL21 to synthesize active recombinant H2-pathway components and stimulate ferredoxin-dependent H2-accumulation in the presence or absence of oxygen. Under anoxic conditions, deletion of iscR stimulated recombinant Fe–Fe hydrogenase activity threefold, whilst plasmid-based overexpression of the isc operon had no effect on hydrogenase activity. After cultivation with 21% (v/v) O2 in the headspace, no recombinant hydrogenase activity was observed in soluble extracts of wild-type BL21, although low levels of activity could be observed in the ΔiscR strain (700-fold lower than anoxic conditions, 180-fold greater than the limit of detection). Under closed batch conditions starting with 5% (v/v) O2, ΔiscR strains displayed fivefold greater levels of total hydrogenase activity and recombinant ferredoxin-dependent H2-accumulation relative to the control strain. In cultures starting with 10% (v/v) O2, H2-accumulation was stimulated 35-fold relative to the control. ΔiscR strains displayed enhanced synthesis and activity of integral H2-pathway components under all tested conditions and enhanced H2-accumulation under partially oxic conditions. Deletion of iscR is, therefore, a useful strategy to stimulate H2-production, particularly if the hydrogenase catalyzes the rate-limiting reaction.


Anoxic Condition Methyl Viologen Oxic Condition Biohydrogen Production Hydrogenase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Taeko Mizutani for technical assistance.


  1. Akhtar MK, Jones PR (2008) Engineering of a synthetic hydF-hydE-hydG-hydA operon for biohydrogen production. Anal Biochem 373:170–172CrossRefGoogle Scholar
  2. Atkinson DE (1956) The biochemistry of Hydrogenomonas. IV. The inhibition of hydrogenase by oxygen. J Biol Chem 218:557–564Google Scholar
  3. Barras F, Loiseau L, Py B (2005) How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins. Adv Microb Physiol 50:41–101CrossRefGoogle Scholar
  4. Djaman O, Outten FW, Imlay JA (2004) Repair of oxidized iron–sulfur clusters in Escherichia coli. J Biol Chem 279:44590–9CrossRefGoogle Scholar
  5. Fitzgerald MP, Rogers LJ, Rao KK, Hall DO (1980) Efficiency of ferredoxins and flavodoxins as mediators in systems for hydrogen evolution. Biochem J 192:665–672Google Scholar
  6. Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M (2007) Hydrogenases and Hydrogen Photoproduction in Oxygenic Photosynthetic Organisms. Annu Rev Plant Biol 58:71–91CrossRefGoogle Scholar
  7. Giel JL, Rodionov D, Liu M, Blattner FR, Kiley PJ (2006) IscR-dependent gene expression links iron–sulphur cluster assembly to the control of O2-regulated genes in Escherichia coli. Mol Microbiol 60:1058–1075CrossRefGoogle Scholar
  8. Girbal L, von Abendroth G, Winkler M, Benton PM, Meynial-Salles I, Croux C, Peters JW, Happe T, Soucaille P (2005) Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities. Appl Environ Microbiol 71:2777–2781CrossRefGoogle Scholar
  9. Gorwa MF, Croux C, Soucaille P (1996) Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. J Bacteriol 178:2668–2675Google Scholar
  10. Gottschalk G (1986) Bacterial Metabolism, 2nd edn. Springer-Verlag, New YorkGoogle Scholar
  11. Grawert T, Kaiser J, Zepeck F, Laupitz R, Hecht S, Amslinger S, Schramek N, Schleicher E, Weber S, Haslbeck M, Buchner J, Rieder C, Arigoni D, Bacher A, Eisenreich W, Rohdich F (2004) IspH protein of Escherichia coli: studies on iron–sulfur cluster implementation and catalysis. J Am Chem Soc 126:12847–12855CrossRefGoogle Scholar
  12. Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52:21–29Google Scholar
  13. Imlay JA (2006) Iron–sulphur clusters and the problem with oxygen. Mol Microbiol 59:1073–1082CrossRefGoogle Scholar
  14. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron–sulfur clusters. Annu Rev Biochem 74:247–281CrossRefGoogle Scholar
  15. King PW, Posewitz MC, Ghirardi ML, Seibert M (2006) Functional studies of [Fe–Fe] hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188:2163–2172CrossRefGoogle Scholar
  16. Klibanov AM, Kaplan NO, Kamen MD (1978) A rationale for stabilization of oxygen-labile enzymes:application to a clostridial hydrogenase. Proc Natl Acad Sci U S A 75:3640–3643CrossRefGoogle Scholar
  17. Koskinen PEP, Lay CH, Beck SE, Tolvanen KES, Kaksonen AH, Örlygsson J, Lin CY, Puhakka JA (2007) Bioprospecting thermophilic microorganisms from Icelandic Hot Springs for hydrogen and ethanol production. Energy and Fuels. DOI  10.1021/ef700275w
  18. Kowal AT, Adams MW, Johnson MK (1989) Electron paramagnetic resonance studies of the low temperature photolytic behavior of oxidized hydrogenase I from Clostridium pasteurianum. J Biol Chem 264:4342–4348Google Scholar
  19. Kriek M, Peters L, Takahashi Y, Roach PL (2003) Effect of iron–sulfur cluster assembly proteins on the expression of Escherichia coli lipoic acid synthase. Protein Expr Purif 28:241–245CrossRefGoogle Scholar
  20. Lovenberg W, Buchanan BB, Rabinowitz JC (1963) Studies on the chemical nature of Clostridial Ferredoxin. J Biol Chem 238:3899–3913Google Scholar
  21. Maeda T, Sanchez-Torres V, Wood TK (2007) Metabolic engineering to enhance bacterial hydrogen production. Microb Biotechnol 1:30–39 DOI  10.1111/j.1751-7915.2007.00003.x Google Scholar
  22. Meyer J (2000) Clostridial iron-sulphur proteins. J Mol Microbiol Biotechnol 2:9–14Google Scholar
  23. Morimoto K, Kimura T, Sakka K, Ohmiya K (2005) Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol Lett 246:229–234CrossRefGoogle Scholar
  24. Moulis JM, Davasse V, Meyer J, Gaillard J (1996) Molecular mechanism of pyruvate-ferredoxin oxidoreductases based on data obtained with the Clostridium pasteurianum enzyme. FEBS Lett 380:287–290CrossRefGoogle Scholar
  25. Nakamura M, Saeki K, Takahashi Y (1999) Hyperproduction of recombinant ferredoxins in Escherichia coli by coexpression of the ORF1-ORF2-iscS-iscU-iscA-hscB-hscA-fdx-ORF3 gene cluster. J Biochem (Tokyo) 126:10–18Google Scholar
  26. Nicolet Y, Cavazza C, Fontecilla-Camps JC (2002) Fe-only hydrogenases: structure, function and evolution. J Inorg Biochem 91:1–8CrossRefGoogle Scholar
  27. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853–1858CrossRefGoogle Scholar
  28. Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720CrossRefGoogle Scholar
  29. Rees DC, Howard JB (2003) The interface between the biological and inorganic worlds: iron–sulfur metalloclusters. Science 300:929–931CrossRefGoogle Scholar
  30. Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R (2004) Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 331:370–375CrossRefGoogle Scholar
  31. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  32. Schwartz CJ, Giel JL, Patschkowski T, Luther C, Ruzicka FJ, Beinert H, Kiley PJ (2001) IscR, an Fe–S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe–S cluster assembly proteins. Proc Natl Acad Sci U S A 98:14895–14900CrossRefGoogle Scholar
  33. Sorensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115:113–128CrossRefGoogle Scholar
  34. Takahashi Y, Tokumoto U (2002) A third bacterial system for the assembly of iron–sulfur clusters with homologs in archaea and plastids. J Biol Chem 277:28380–28383CrossRefGoogle Scholar
  35. Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H (2007) Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process. Appl Microbiol Biotechnol 74:754–760CrossRefGoogle Scholar
  36. Zepeck F, Grawert T, Kaiser J, Schramek N, Eisenreich W, Bacher A, Rohdich F (2005) Biosynthesis of isoprenoids. purification and properties of IspG protein from Escherichia coli. J. Org. Chem. 70:9168–9174CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Research and Development DivisionFujirebio IncorporatedHachioji-shiJapan

Personalised recommendations