Advertisement

Applied Microbiology and Biotechnology

, Volume 78, Issue 2, pp 241–247 | Cite as

Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin

  • Xiaoli Liu
  • Mingsheng DongEmail author
  • Xiaohong Chen
  • Mei Jiang
  • Xin Lv
  • Jianzhong Zhou
Biotechnological Products and Process Engineering

Abstract

An endophytic Xylaria sp., having broad antimicrobial activity, was isolated and characterized from Ginkgo biloba L. From the culture extracts of this fungus, a bioactive compound P3 was isolated by bioactivity-guided fractionation and identified as 7-amino-4-methylcoumarin by nuclear magnetic resonance, infrared, and mass spectrometry spectral data. The compound showed strong antibacterial and antifungal activities in vitro against Staphylococcus aureus [minimal inhibitory concentrations (MIC) 16 μg·ml−1], Escherichia coli (MIC, 10 μg·ml−1), Salmonella typhia (MIC, 20 μg·ml−1), Salmonella typhimurium (MIC, 15 μg·ml−1), Salmonella enteritidis (MIC, 8.5 μg·ml−1), Aeromonas hydrophila (MIC, 4 μg·ml−1), Yersinia sp. (MIC, 12.5 μg·ml−1), Vibrio anguillarum (MIC, 25 μg·ml−1), Shigella sp. (MIC, 6.3 μg·ml−1), Vibrio parahaemolyticus (MIC, 12.5 μg·ml−1), Candida albicans (MIC, 15 μg·ml−1), Penicillium expansum (MIC, 40 μg·ml−1), and Aspergillus niger (MIC, 25 μg·ml−1). This is the first report of 7-amino-4-methylcoumarin in fungus and of the antimicrobial activity of this metabolite. The obtained results provide promising baseline information for the potential use of this unusual endophytic fungus and its components in the control of food spoilage and food-borne diseases.

Keywords

Endophytes Xylaria 7-Amino-4-methylcoumarin Antimicrobial activity Ginkgo biloba 

Notes

Acknowledgments

This work was co-financed by High-Tech Research and Development Program of China (2006AA10Z343) and Key Scientific Project of Jiangsu Province (BE2006 325).

References

  1. Abate D, Abraham W, Meyer H (1997) Cytochalasins and phytotoxins from the fungus Xylaria obovata. Phytochemistry 44:1443–1448CrossRefGoogle Scholar
  2. Amnuaykanjanasin A, Punya J, Paungmoung P, Rungrod A, Tachaleat A, Pongpattanakitshote S, Cheevadhanarak S, Tanticharoen M (2005) Diversity of type I polyketide synthase genes in the wood-decay fungus Xylaria sp. BCC 1067. FEMS Microbiol Lett 251:125–136CrossRefGoogle Scholar
  3. Brunner F, Petrini O (1992) Taxonomy of some Xylaria species and xylariaceous endophytes by isozyme electrophoresis. Mycol Res 96:723–733Google Scholar
  4. Deak T, Beuchat LR (1996) Handbook of food spoilage. CRC, New York, USAGoogle Scholar
  5. Espada A, Rivera-Sagredo A, Fuente JM, Hueso-Rodriguez JA, Elson SW (1997) New cytochalasins from the fungus Xylaria hypoxylon. Tetrahedron 53:6485–6492CrossRefGoogle Scholar
  6. Espinosa-Garcia FJ, Langenheim JH (1990) The endophytic fungal community of a coastal redwood population—diversity and spatial patterns. New Phytol 116:89–97CrossRefGoogle Scholar
  7. Fisher PJ, Petrini O, Petrini LE, Sutton BC (1994) Fungal endophytes from the leaves and twigs of Quercus ilex L. from England, Marjorca and Switzerland. New Phytol 127:133–137CrossRefGoogle Scholar
  8. Gomez S, Cosson C, Deschamps AM (1997) Evidence for a bacteriocin-like substance produced by a new strain of Streptococcus sp., inhibitory to Gram-positive food-borne pathogens. Res Microbiol 148:757–766CrossRefGoogle Scholar
  9. Healy PC, Hocking A, Tran-Dinh N, Pitt JI, Shivas RG, Mitchell JK, Kotiw M, Davis RA (2004) Xanthones from a microfungus of the genus Xylaria. Phytochemistry 65:2373–2378CrossRefGoogle Scholar
  10. Karsten K, Muhammad R (2004) Total synthesis of (+)-xyloketal D, a secondary metabolite from the mangrove fungus Xylaria sp. Tetrahedron Lett 45:293–294CrossRefGoogle Scholar
  11. Kashman Y, Gustafson KR, Fuller RW, Cardellina JH, McMahon JB, Currens MJ, Buckheit JRW, Hughes S, Cragg GM, Boyd MR (1992) The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem 35:2735–2743CrossRefGoogle Scholar
  12. Li JY, Strobel GA (2001) Jesteone and hydroxyl-jesterone antioomycete cyclohexenenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry 57:261–265CrossRefGoogle Scholar
  13. Liu R, Feng L, Sun A, Kong L (2004) Preparative isolation and purification of coumarins from Peucedanum praeruptorum Dunn by high-speed counter-current chromatography. J Chromatogr A 1057:89–94CrossRefGoogle Scholar
  14. Liu XL, Dong MS, Chen XH, Jiang M, Lv X, Yan GJ (2007) Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem 105:548–554CrossRefGoogle Scholar
  15. Maucher A, Vonangerer E (1994) Antitumor-activity of coumarin and 7-hydroxycoumarin against 7,12-dimethylbenz[a]anthracene-induced rat mammary carcinomas. J Cancer Res Clin Oncol 120:502–504CrossRefGoogle Scholar
  16. Paya M, Halliwel B, Hoult JR (1992) Interactions of a series of coumarins with reactive oxygen species: scavenging of superoxide, hypochlorous acid and hydroxyl radicals. Biochem Pharmacol 44:205–214CrossRefGoogle Scholar
  17. Petrini O, Stone JK, Carroll FE (1982) Endophytic fungi in evergreen shrubs in Western Oregon: a preliminary study. Can J Bot 60:789–796CrossRefGoogle Scholar
  18. Pozdnev VF (1990) Improved method for synthesis of 7-amino-4-methylcoumarin. Chem Heterocycl Compd 26:264–265CrossRefGoogle Scholar
  19. Rouhi AM (2003) Fine chemical firms enable flavor and fragrance industry. Chem Eng News 81:54Google Scholar
  20. Strobel G (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544CrossRefGoogle Scholar
  21. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502CrossRefGoogle Scholar
  22. Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis micrspora, an endophytic fungus of Taxus wallichiana. Microbiology 142:435–440CrossRefGoogle Scholar
  23. Wei JC (1979) Identification handbook of fungi. Science and Technology Press, Shanghai, ChinaGoogle Scholar
  24. White TJ, Bruns T, Lee S, Taylor T (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  25. Wiyakrutta S, Sriubolmas N, Panphut W, Thongon N, Danwisetkanjana K, Ruangrungsi N, Meevootisom V (2004) Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World J Microbiol Biotechnol 20:265–272CrossRefGoogle Scholar
  26. Yang XW, Hattori M, Namba T (1996) Two new coumarins from the roots of Aegle marmelos. J Chin Pharmaceu Sci 5:68–73Google Scholar
  27. Yang XW, Yan ZK, Gu ZM, Zhou GC, Masao H, Tsuneo N (1994) Chemical constituents of underground parts of Notoptecygium forbesii Boiss. J Chin Pharmaceut Sci 29:141–143Google Scholar
  28. Zhu HJ, Qu F, Zhu LH (1993) Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res 21:5279–5280CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Xiaoli Liu
    • 1
    • 2
  • Mingsheng Dong
    • 1
    Email author
  • Xiaohong Chen
    • 1
  • Mei Jiang
    • 1
  • Xin Lv
    • 1
  • Jianzhong Zhou
    • 2
  1. 1.College of Food Science and TechnologyNanjing Agricultural UniversityNanjingPeople’s Republic of China
  2. 2.Institute of Agro-product ProcessingJiangsu Academy of Agricultural SciencesNanjingPeople’s Republic of China

Personalised recommendations