Applied Microbiology and Biotechnology

, Volume 78, Issue 1, pp 157–163 | Cite as

Substrate specificity of Stenotrophomonas nitritireducens in the hydroxylation of unsaturated fatty acid

  • In-Sik Yu
  • Soo-Jin Yeom
  • Hye-Jung Kim
  • Jung-Kul Lee
  • Yong-Hwi Kim
  • Deok-Kun Oh
Applied Microbial and Cell Physiology

Abstract

An isolated bacterium that converted unsaturated fatty acids to hydroxy fatty acids was identified as Stenotrophomonas nitritireducens by API analysis, cellular fatty acids compositions, sequencing the full 16S ribosomal ribonucleic acid, and evaluating its nitrite reduction ability. S. nitritireducens has unique regio-specificity for C16 and C18 cis-9 unsaturated fatty acids. These fatty acids are converted to their 10-hydroxy fatty acids without detectable byproducts. Among the cis-9-unsaturated fatty acids, S. nitritireducens showed the highest specificity for linoleic acid. The cells converted 20 mM linoleic acid to 13.5 mM 10-hydroxy-12(Z)-octadecenoic acid at 30°C and pH 7.5 with a yield of 67.5% (mol/mol).

Keywords

10-Hydroxy fatty acids Substrate specificity Stenotrophomonas nitritireducens cis-9-Unsaturated fatty acids 

References

  1. Assih EA, Ouattara AS, Thierry S, Cayol JL, Labat M, Macarie H (2002) Stenotrophomonas acidaminiphila sp. nov., a strictly aerobic bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol 52:559–568Google Scholar
  2. Bagby MO, Calson KD (1989) Chemical and biological conversion of soybean oil for industrial products. In: Cambie RC (ed) Fats for the future. Ellis Horwood, Chichester, pp 301–317Google Scholar
  3. Beji A, Izard D, Gavini F, Leclerc H, Leseine-Delstanche M, Krembel J (1987) A rapid chemical procedure for isolation and purification of chromosomal DNA from gram-negative bacilli. Anal Biochem 162:18–23CrossRefGoogle Scholar
  4. Chance DL, Gerhardt KO, Mawhinney TP (1998) Gas–liquid chromatography-mass spectrometry of hydroxy fatty acids as their methyl esters tert.-butyldimethylsilyl ethers. J Chromatogr A 793:91–98CrossRefGoogle Scholar
  5. Collins YF, McSweeney PLH, Wilkinson MG (2003) Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Int Dairy J 13:841–866CrossRefGoogle Scholar
  6. Finkmann W, Altenodorf K, Stackebrandt E, Lipski A (2000) Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephilitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50:273–282Google Scholar
  7. Fukuda T, Imai Y, Komori M, Nakamura M, Kusunnose E, Satouchi K, Kusunnose M (1994) Different mechanisms of regioselection of fatty acid hydroxylation by laurate (ω-1)-hydroxylating P450s, P450 2C2 and P450 2E1. J Biochem 115:338–344Google Scholar
  8. Hosokawa M, Hou CT, Weisleder D (2003) Production of novel tetrahydroxyfuranyl fatty acids from γ-linolenic acid by Clavibacter sp. strain ALA2. Appl Environ Microbiol 69:3868–3873CrossRefGoogle Scholar
  9. Hou CT (1994a) Conversion of linoleic acid to 10-hydroxy-12(Z)-octadecenoic acid by Flavobacterium sp. (NRRL B-14859). J Am Oil Chem Soc 71:975–978CrossRefGoogle Scholar
  10. Hou CT (1994b) Production of 10-ketostearic acid from oleic acid by Flavobacterium sp. strain DS5 (NRRL B-14859). Appl Environ Microbiol 60:3760–3763Google Scholar
  11. Hou CT, Bagby MO (1991) Production of new coumpound, 7,10-dihydroxy-8(E)-octadecenoic acid from oleic acid by Pseudomonas sp. PR3. J Ind Microbiol 7:123–130CrossRefGoogle Scholar
  12. Hou CT, Bagby MO, Plattner RD, Koritala S (1991) A novel coumpound, 7,10-dihydroxy-8(E)-octadecenoic acid from oleic acid by bioconversion. J Am Oil Chem Soc 68:99–101CrossRefGoogle Scholar
  13. Hou CT, Brown W, Labeda DP, Abbott TP, Weisleder D (1997) Microbial production of a novel trihydroxy unsaturated fatty acid from linoleic acid. J Ind Microbiol Biotechnol 19:34–38CrossRefGoogle Scholar
  14. Hudson JA, Morvan B, Joblin KN (1998) Hydration of linoleic acid by bacteria isolated from ruminants. FEMS Microbiol Lett 169:277–282CrossRefGoogle Scholar
  15. Kishimoto N, Yamamoto I, Toraishi K, Yoshioka S, Saito K, Masuda H, Fujita T (2003) Two distinct pathways for the formation of hydroxy FA from linoleic acid by lactic acid bacteria. Lipids 38:1269–1274CrossRefGoogle Scholar
  16. Koritala S, Bagby MO (1992) Microbial conversion of linoleic and linolenic acids to unsaturated hydroxyl fatty acids. J Am Oil Chem Soc 69:575–578CrossRefGoogle Scholar
  17. Kuo TM, Kim H, Hou CT (2001) Production of a novel compound, 7,10,12-trihydroxy-8(E)-octadecenoic acid from ricinoleic acid by Pseudomonas aeruginosa PR3. Curr Microbiol 43:198–203CrossRefGoogle Scholar
  18. Lee DS, Yamada A, Sugimoto H, Matsunaga I, Ogura H, Ichihara K, Adachi S, Park SY, Shiro Y (2003a) Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis. Crystallographic, spectroscopic, and mutational studies. J Biol Chem 278:9761–9767Google Scholar
  19. Lee SO, Kim CS, Cho SM, Choi HJ, Ji GE, Oh DK (2003b) Bioconversion of linoleic acid into conjugated linoleic acid during fermentation and by washed cells of Lactobacillus reuteri. Biotechnol Lett 25:935–938Google Scholar
  20. Morvan B, Joblin KN (1999) Hydration of oleic acid by Enterococcus gallinarum, Pediococcus acidilactici and Lactobacillus sp. isolated from the rumen. Anarobe 5:605–611Google Scholar
  21. Mukerjea R, Kim D, Robyt JF (1996) Simplified and improved methylation analysis of saccharides, using a modified procedure and thin-layer chromatography. Carbohydr Res 292:11–20Google Scholar
  22. Naughton FC (1974) Production, chemistry and commercial applications of various chemicals from castor oil. J Am Oil Chem Soc 51:65–71CrossRefGoogle Scholar
  23. Ogawa J, Matsumura K, Kishino S, Omura Y, Shimizu S (2001) Conjugated linoleic acid accumulation via 10-hydroxy-12-octadecaenoic acid during microaerobic transformation of linoleic acid by Lactobacillus acidophilus. Appl Environ Microbiol 67:1246–1252Google Scholar
  24. Sasser M (1990a) Identification of bacteria though fatty acid analysis. In: Klement Z, Rudolph K, Sands DC (eds) Methods in phytobacteriology. Akademiai Kiado, Budapest, pp 199–201Google Scholar
  25. Sasser M (1990b) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101. MIDI, Newark, DelGoogle Scholar
  26. Smibert RM, Krieg WR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  27. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703Google Scholar
  28. Yamada Y, Uemura H, Nakaya H, Sakata K, Takatori T, Nagao M, Iwase H, Iwadate K (1996) Production of hydroxy fatty acid (10-hydroxy-12(Z)-octadecenoic acid) by Lactobacillus plantarum from linoleic acid and its cardiac effects to guinea pig papillary muscles. Biochem Biophys Res Commun 226:391–395CrossRefGoogle Scholar
  29. Yang HC, Im WT, Kang MS, Shin DY, Lee ST (2006) Stenotrophomonas koreensis sp. nov., isolated from compost in South Korea. Int J Syst Evol Microbiol 56:81–84Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • In-Sik Yu
    • 1
  • Soo-Jin Yeom
    • 1
  • Hye-Jung Kim
    • 1
  • Jung-Kul Lee
    • 2
  • Yong-Hwi Kim
    • 3
  • Deok-Kun Oh
    • 1
  1. 1.Department of Bioscience and BiotechnologyKonkuk UniversitySeoulSouth Korea
  2. 2.Department of Chemical EngineeringKonkuk UniversitySeoulSouth Korea
  3. 3.Department of Food Science and TechnologySejong UniversitySeoulSouth Korea

Personalised recommendations