Applied Microbiology and Biotechnology

, Volume 78, Issue 1, pp 181–188 | Cite as

Generation of readily transformable Bacillus licheniformis mutants

  • Bianca Waschkau
  • Jens Waldeck
  • Susanne Wieland
  • Renèe Eichstädt
  • Friedhelm Meinhardt


A set of mutants was generated by targeted deletion of the hsdR loci of two type I restriction modification systems (RMS) identified in Bacillus licheniformis DSM13. Single as well as double knock-outs resulted in strains being readily transformable with plasmids isolated from Bacilli. Introduction of shuttle plasmids isolated from Escherichia coli was routinely possible when the double mutant B. licheniformis MW3 (ΔhsdR1, ΔhsdR2) was used in transformation experiments. Growth and secretion of extracellular enzymes were not affected in any of the mutants. Thus, along with an optimized transformation protocol, this study makes available an urgently needed transformation system for this industrially exploited species.


Bacillus licheniformis Targeted gene deletion Restriction modification system Restriction-negative mutants Improved transformation Transformation 


  1. Beary TP, Braymer HD, Achberger EC (1997) Evidence of participation of McrBs in McrBC restriction in Escherichia coli K-12. J Bacteriol 179:7768–7775Google Scholar
  2. Chang S, Cohen SN (1979) High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet 168:111–115CrossRefGoogle Scholar
  3. Gärtner D, Geissendörfer M, Hillen W (1988) Expression of Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. J Bacteriol 170:3102–3109Google Scholar
  4. Gherna R, Pienta P, Cote R (1989) American type culture collection catalog of bacteria and phages. American Type Culture Collection, RockvilleGoogle Scholar
  5. Gomez Ramirez M, Rojas Avelizapa LI, Rojas Avelizapa NG, Cruz Camarillo R (2004) Colloidal chitin stained with Remazol Brilliant Blue R, a useful substrate to select chitinolytic microorganisms and to evaluate chitinases. J Microbiol Methods 56:213–219CrossRefGoogle Scholar
  6. Gwinn DD, Thorne CB (1964) Transformation of Bacillus licheniformis. J Bacteriol 87:519–526Google Scholar
  7. Kawamura F, Doi RH (1984) Construction of a Bacillus subtilis double mutant deficient in exracellular alkaline and neutral proteases. J Bacteriol 160:442–444Google Scholar
  8. Leonard CG, Mattheis DK, Mattheis MJ, Housewright RD (1964) Transformation to prototrophy and polyglutamic acid synthesis in Bacillus licheniformis. J Bacteriol 88:220–225Google Scholar
  9. Macaluso A, Mettus AM (1991) Efficient transformation of Bacillus thuringiensis requires nonmethylated plasmid DNA. J Bacteriol 173:1353–1356Google Scholar
  10. Nahrstedt H, Meinhardt F (2004) Structural and functional characterization of the Bacillus megaterium uvrBA locus and generation of UV-sensitive mutants. Appl Microbiol Biotechnol 65:193–199CrossRefGoogle Scholar
  11. Nahrstedt H, Wittchen KD, Rachman MA, Meinhardt F (2004) Identification and functional characterization of a type I signal peptidase gene of Bacillus megaterium DSM319. Appl Microbiol Biotechnol 64:243–249CrossRefGoogle Scholar
  12. Nahrstedt H, Waldeck J, Gröne M, Eichstädt R, Feesche J, Meinhardt F (2005) Strain development in Bacillus licheniformis: construction of biologically contained mutants deficient in sporulation and DNA repair. J Biotechnol 119:245–254CrossRefGoogle Scholar
  13. Raleigh EA, Brooks JE (1998) Restriction modification systems: where they are and what they do. In: De Bruijn FJ, Lupski JR, Weinstock GM (eds) Bacterial Genomes. Chapman and Hall, New York, pp 78–92Google Scholar
  14. Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, Lopez de Leon A, Xiang H, Gusti V, Clausen IG, Olsen PB, Rasmussen MD, Andersen JT, Jorgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5:R77CrossRefGoogle Scholar
  15. Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual, 3rd ed.rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  16. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50:1–17CrossRefGoogle Scholar
  17. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gelelectrophoresis. J Mol Biol 98:503–517CrossRefGoogle Scholar
  18. Thorne CB, Stull HB (1966) Factors Affecting Transformation of Bacillus licheniformis. J Bacteriol 91:1012–1020Google Scholar
  19. Vary PS, Biedendieck R, Fuerch T, Meinhardt F, Rohde M, Deckwer WD, Jahn D (2007) Bacillus megaterium—from simple soil bacterium to industrial protein production host. Appl Microbiol Biotechnol 76:957–967CrossRefGoogle Scholar
  20. Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Baumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G (2004) The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7:204–211CrossRefGoogle Scholar
  21. Waldeck J, Daum G, Bisping B, Meinhardt F (2006) Isolation and molecular characterization of Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin. Appl Environ Microbiol 72:7879–7885CrossRefGoogle Scholar
  22. Waldeck J, Meyer-Rammes H, Nahrstedt H, Eichstädt R, Wieland S, Meinhardt F (2007a) Targeted deletion of the uvrBA operon and biological containment in the industrially important Bacillus licheniformis. Appl Microbiol Biotechnol 73:1340–1347CrossRefGoogle Scholar
  23. Waldeck J, Meyer-Rammes H, Wieland S, Feesche J, Maurer KH, Meinhardt F (2007b) Targeted deletion of genes encoding extracellular enzymes in Bacillus licheniformis and the impact on the secretion capability. J Biotechnol 130:124–132CrossRefGoogle Scholar
  24. Wittchen KD, Meinhardt F (1995) Inactivation of the major extracellular protease from Bacillus megaterium DSM 319 by gene replacement. Appl Microbiol Biotechnol 42:871–877CrossRefGoogle Scholar
  25. Woodcock DM, Crowther PJ, Dokerty J, Jefferson S, DeCruz E, Noyer-Weidner M, Smith SS, Michael MZ, Graham MW (1989) Quantitative evaluation of Escherichia coli host strains for tolerance of cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469–3478CrossRefGoogle Scholar
  26. Wyrick PB, Rogers HJ (1973) Isolation and characterization of cell wall-defective variants of Bacillus subtilis and Bacillus licheniformis. J Bacteriol 116:456–465Google Scholar
  27. Xue G-P, Johnson JS, Dalrymple BP (1999) High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Methods 34:183–191CrossRefGoogle Scholar
  28. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Bianca Waschkau
    • 1
  • Jens Waldeck
    • 1
  • Susanne Wieland
    • 2
  • Renèe Eichstädt
    • 2
  • Friedhelm Meinhardt
    • 1
  1. 1.Institut für Molekulare Mikrobiologie und BiotechnologieWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Henkel KgaA, VTB-EnzymtechnologieDüsseldorfGermany

Personalised recommendations