Applied Microbiology and Biotechnology

, Volume 78, Issue 1, pp 147–155 | Cite as

Electricity generation by thermophilic microorganisms from marine sediment

  • B. J. Mathis
  • C. W. Marshall
  • C. E. Milliken
  • R. S. Makkar
  • S. E. Creager
  • H. D. MayEmail author
Applied Microbial and Cell Physiology


The search for microorganisms that are capable of catalyzing the reduction of an electrode within a fuel cell has primarily been focused on bacteria that operate mesobiotically. Bacteria that function optimally under extreme conditions are beginning to be examined because they may serve as more effective catalysts (higher activity, greater stability, longer life, capable of utilizing a broader range of fuels) in microbial fuel cells. An examination of marine sediment from temperate waters (Charleston, SC) proved to be a good source of thermophilic electrode-reducing bacteria. Electric current normalized to the surface area of graphite electrodes was approximately ten times greater when sediment fuel cells were incubated at 60°C (209 to 254 mA/m2) vs 22°C (10 to 22 mA/m2). Electricity-generating communities were selected in sediment fuel cells and then maintained without sediment or synthetic electron-carrying mediators in single-chambered fuel cells. Current was generated when cellulose or acetate was added as a substrate to the cells. The 16S ribosomal ribonucleic acid genes from the heavy biofilms that formed on the graphite anodes of acetate-fed fuel cells were cloned and sequenced. The preponderance of the clones (54 of 80) was most related to a Gram-positive thermophile, Thermincola carboxydophila (99% similarity). The remainder of clones from the community was most related to T. carboxydophila, or uncultured Firmicutes and Deferribacteres. Overall, the data indicate that temperate aquatic sediments are a good source of thermophilic electrode-reducing bacteria.


Thermophiles Microbial fuel cells Electricity Thermincola Deferribacteres 



This research was supported with funds from the National Institutes of Environmental Health Sciences (grant no. ES012815-01) and National Aeronautics and Space Administration (grant no. 897-7557-223-2094553/01-0). The authors would like to thank Sara Polson and Shawn Polson for assistance with 16S rRNA analysis and Kevin Sowers for completing the DNA sequencing.


  1. Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Enivron Sci Technol 40:3388–3394CrossRefGoogle Scholar
  2. Angenent LT, Karin K, Al-Dahhan MH, Wrenn BA, Dominguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485CrossRefGoogle Scholar
  3. Atschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410Google Scholar
  4. Berkaw M, Sowers KR, May HD (1996) Anaerobic ortho dechlorination of polychlorinated biphenyls by estuarine sediments from Baltimore Harbor. Appl Environ Microbiol 62(7):2534–2539Google Scholar
  5. Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71(4):2186–2189CrossRefGoogle Scholar
  6. Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485CrossRefGoogle Scholar
  7. Chen CL, Macarie H, Ramirez I, Olmos A, Ong SL, Monroy O, Liu WT (2004) Microbial community structure in a thermophilic anaerobic hybrid reactor degrading terephthalate. Microbiology 150:3429–3440CrossRefGoogle Scholar
  8. Choi Y, Jung E, Park H, Paik SR, Jung S, Kim S (2004) Construction of microbial fuel cells using thermophilic microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius. Bull Korean Chem Soc 25:813–818CrossRefGoogle Scholar
  9. Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The Ribosomal Database Project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172CrossRefGoogle Scholar
  10. Cutter LA, Watts JEM, Sowers KR, May HD (2001) Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyl. Environ Microbiol 3(11):699–709CrossRefGoogle Scholar
  11. Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69(1):124–154CrossRefGoogle Scholar
  12. Greene AC, Patel BK, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bact 47:505–509Google Scholar
  13. Holmes DE, Bond DR, O’Neil RA, Reimers CE, Tender LR, Lovley DR (2004) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48:178–190CrossRefGoogle Scholar
  14. Jong BC, Kim BH, Chang IS, Liew PWY, Choo YF, Kang GS (2006) Enrichment, performance and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environ Sci Technol 40:6449–6454CrossRefGoogle Scholar
  15. Logan BE (2005) Simultaneous wastewater treatment and biological electricity generation. Water Sci Technol 52:31–37Google Scholar
  16. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRefGoogle Scholar
  17. Lovley DR (2006) Bug Juice: harvesting electricity with microorganisms. Nature Rev Microbiol 4:497–508CrossRefGoogle Scholar
  18. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583CrossRefGoogle Scholar
  19. Madigan MT, Oren A (1999) Thermophilic and halophilic extremophiles. Curr Opin Microbiol 2:265–269CrossRefGoogle Scholar
  20. Madigan MT, Martinko JM (2005) Brock biology of microorganisms, 11st edn. Prentice-Hall, Upper Saddle River, NJGoogle Scholar
  21. Milliken CE, May HD (2007) Sustained generation of electricity by the spore-forming, Gram positive, Desulfitobacterium hafniense strain DCB2. Appl Microbiol Biotechnol 73:1180–1189CrossRefGoogle Scholar
  22. Min B, Kim J, Oh S, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968CrossRefGoogle Scholar
  23. Miroshnichenko ML, Slobodkin AI, Kostrikina NA, L’Haridon S, Nercessian O, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA, Jeanthon C (2003) Deferribacter abyssi sp. nov., an anaerobic thermophile from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Inter J Syst Evol Microbiol 53:1637–1641CrossRefGoogle Scholar
  24. Niessen J, Schroder U, Harnisch F, Scholz F (2005) Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Lett Appl Microbiol 41(3):286–290CrossRefGoogle Scholar
  25. Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66:1292–1297CrossRefGoogle Scholar
  26. Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306CrossRefGoogle Scholar
  27. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5372–5382CrossRefGoogle Scholar
  28. Rabaey K, Boon N, Höfte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Env Sci Technol 39:3401–3408CrossRefGoogle Scholar
  29. Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1:9–18CrossRefGoogle Scholar
  30. Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment–water interface. Environ Sci Technol 35:192–195CrossRefGoogle Scholar
  31. Ren Z, Ward TE, Regan JM (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41:4781–4786CrossRefGoogle Scholar
  32. Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH (2007) Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol Bioeng 97:1398–1407CrossRefGoogle Scholar
  33. Sokolova TG, Kostrikina NA, Chernyh NA, Kolganova TV, Tourova TP, Bonch-Osmolovskaya EA (2005) Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. Int J Syst Evol Microbiol 55:2069–2073CrossRefGoogle Scholar
  34. Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003) Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:839–846CrossRefGoogle Scholar
  35. Tender LM, Reimers CE, Stecher HA 3rd, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825Google Scholar
  36. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA Sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefGoogle Scholar
  37. Wilkinson S (2000) Gastrobots: benefits and challenges of microbial fuel cells in food powered robot applications. Auton Robots 9:99–111CrossRefGoogle Scholar
  38. Yan B, Lovley DR, Krushkal J (2007) Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(iii) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes. Appl Environ Microbiol 73:5347–5353CrossRefGoogle Scholar
  39. Zavarzina DG, Sokolova TG, Tourova TP, Chernyh NA, Kostrikina NA, Bonch-Osmolovskaya EA (2007) Therminocola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Extremophiles 11:1–7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • B. J. Mathis
    • 1
  • C. W. Marshall
    • 1
  • C. E. Milliken
    • 1
  • R. S. Makkar
    • 1
  • S. E. Creager
    • 2
  • H. D. May
    • 1
    Email author
  1. 1.Department of Microbiology and Immunology, Marine Biomedicine and Environmental Science CenterMedical University of South CarolinaCharlestonUSA
  2. 2.Department of ChemistryClemson UniversityClemsonUSA

Personalised recommendations