Advertisement

Applied Microbiology and Biotechnology

, Volume 77, Issue 6, pp 1241–1250 | Cite as

Novel peroxidases of Marasmius scorodonius degrade β-carotene

  • Manuela Scheibner
  • Bärbel Hülsdau
  • Kateryna Zelena
  • Manfred Nimtz
  • Lex de Boer
  • Ralf G. Berger
  • Holger ZornEmail author
Biotechnologically Relevant Enzymes and Proteins

Abstract

Two extracellular enzymes (MsP1 and MsP2) capable of efficient β-carotene degradation were purified from culture supernatants of the basidiomycete Marasmius scorodonius (garlic mushroom). Under native conditions, the enzymes exhibited molecular masses of ~150 and ~120 kDa, respectively. SDS-PAGE and mass spectrometric data suggested a composition of two identical subunits for both enzymes. Biochemical characterisation of the purified proteins showed isoelectric points of 3.7 and 3.5, and the presence of heme groups in the active enzymes. Partial amino acid sequences were derived from N-terminal Edman degradation and from mass spectrometric ab initio sequencing of internal peptides. cDNAs of 1,604 to 1,923 bp, containing open reading frames (ORF) of 508 to 513 amino acids, respectively, were cloned from a cDNA library of M. scorodonius. These data suggest glycosylation degrees of ~23% for MsP1 and 8% for MsP2. Databank homology searches revealed sequence homologies of MsP1 and MsP2 to unusual peroxidases of the fungi Thanatephorus cucumeris (DyP) and Termitomyces albuminosus (TAP).

Keywords

Basidiomycetes Carotenoid degradation DyP-type peroxidase 

Notes

Acknowledgement

Support of the work by the “Deutsche Forschungsgemeinschaft” (ZO 122/1–2) is gratefully acknowledged. The authors thank O. Scheibner (HKI Jena, Germany) for the MALDI–TOF analyses.

References

  1. Ainsworth GC, Sparrow FK, Sussman AS (1973) A taxonomic review with keys: basidiomycetes and lower fungi.. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The fungi, an advanced treatise, vol. 4B. Academic, OrlandoGoogle Scholar
  2. Ben Aziz A, Grossman S, Ascarelli I, Budowski P (1971) Carotene-bleaching activities of lipoxygenase and heme proteins as studied by a direct spectrophotometric method. Phytochemistry 10:1445–1452CrossRefGoogle Scholar
  3. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795CrossRefGoogle Scholar
  4. Blodig W, Doyle WA, Smith AT, Winterhalter K, Choinowski TH, Piontek K (1998) Autocatalytic formation of hydroxy group at Cß of Trp 171 in lignin Peroxidase. Biochemistry 37:8832–8838CrossRefGoogle Scholar
  5. Choinowski TH, Blodig W, Winterhalter K, Piontek K (1999) The crystal structure of lignin peroxidase at 1,7 Å resolution reveals a hydroxyl group on the Cß of tryptophan 171: a novel radical site formed during redox cycle. J Mol Biol 286:809–827CrossRefGoogle Scholar
  6. Conesa A, van den Hondel CAMJJ, Punt PJ (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66:3016–3023CrossRefGoogle Scholar
  7. Faraco V, Piscitelli A, Sannia G, Giardina P (2007) Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World J Microbiol Biotechnol 23:889–893CrossRefGoogle Scholar
  8. Henne KR, Kunze KL, Zheng Y-M, Christmas P, Soberman RJ, Rettie AE (2001) Covalent linkage of prosthetic heme to CYP4 family P450 enzymes. Biochemistry 40:12925–12931CrossRefGoogle Scholar
  9. Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  10. Hoegger PJ, Majcherczyk A, Dwivedi RC, Svobodová K, Kilaru S, Kües U (2007) Enzymes in wood degradation. In: Kües U (ed) Wood production, wood technology and biotechnological impacts, Universitätsverlag Göttingen, Göttingen (in press)Google Scholar
  11. Johansson T, Nyman PO (1996) A cluster of genes encoding major isoenzymes of lignin peroxidase and manganese peroxidase from the white-rot fungus Trametes versicolor. Gene 170:31–38CrossRefGoogle Scholar
  12. Johjima T, Ohkuma M, Kudo T (2003) Isolation and cDNA cloning of novel hydrogen peroxidase-dependent phenol oxidase from the basidiomycete Termitomyces albuminosus. Appl Microbiol Biotechnol 61:220–225Google Scholar
  13. Julenius K, Molgaard A, Gupta R, Brunak S (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type-O-glycosylation sites. Glycobiology 15:153–164CrossRefGoogle Scholar
  14. Kang S-O, Shin K-S, Han Y-H, Youn H-D, Hah YC (1993) Purification and characterisation of an extracellular peroxidase from white-rot fungus Pleurotus ostreatus. Biochim Biophys Acta 1163:158–164Google Scholar
  15. Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035Google Scholar
  16. Kishi K, Kusters-van Someren M, Mayfield MB, Sun J, Loehr TM, Gold MH (1996) Characterization of manganese(II) binding site mutants of manganese peroxidase. Biochemistry 35:8986–8994CrossRefGoogle Scholar
  17. Kupfer DM, Drabenstot SD, Buchanan KL, Lai H, Zhu H, Dyer DW, Roe BA, Murphy JW (2004) Introns and splicing elements of five diverse fungi. Eukaryot Cell 3:1088–1100CrossRefGoogle Scholar
  18. Laemmli UK (1979) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  19. Lis H, Sharon N (1993) Protein glycosylation. Structural and functional aspects. Eur J Biochem 218:1–27CrossRefGoogle Scholar
  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  21. Marasco EK, Vay K, Schmidt-Dannert C (2006) Identification of carotenoid cleavage dioxygenases from Nostoc spp. PCC 7120 with different cleavage activities. J Biol Chem 281:31583–31593CrossRefGoogle Scholar
  22. Martínez AT (2002) Molecular biology and structure-function of lignin-degrading peroxidases. Enzyme Microb Technol 30:425–444CrossRefGoogle Scholar
  23. Nie G, Reading NS, Aust SD (1999) Relative stability of recombinant versus native peroxidases from Phanerochaete chrysosporium. Arch Biochem Biophys 365:328–334CrossRefGoogle Scholar
  24. Rehm H (2002) Der Experimentator: Proteinbiochemie/Proteomics. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  25. Rodríguez-Bustamante E, Maldonado-Robledo G, Ortiz MA, Diaz-Avalos C, Sánchez S (2005) Bioconversion of lutein using a microbial mixture—maximizing the production of tobacco aroma compounds by manipulation of culture medium. Appl Microbiol Biotechnol 68:174–182CrossRefGoogle Scholar
  26. Rodríguez-Bustamante E, Sánchez S (2007) Microbial production of C13-norisoprenoids and other aroma compounds via carotenoid cleavage. Crit Rev Microbiol 33:211–230CrossRefGoogle Scholar
  27. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana, Totowa, pp 365–386Google Scholar
  28. Ruíz Dueñas FJ, Martínez MJ, Martínez AT (1999) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–235CrossRefGoogle Scholar
  29. Sato T, Hara S, Matsui T, Sazaki G, Sajio S, Ganbe T, Tanaka N, Sugano Y, Shoda M (2004) A unique dye-decolorizing peroxidase, DyP, from Thanatephorus cucumeris Dec1: heterologous expression, crystallization and preliminary X-ray analysis. Acta Crystallogr Sect D Biol Crystallogr 60:149–152CrossRefGoogle Scholar
  30. Schwartz SH, Cai Tan B, Gage DA, Zeevaart JAD, McCarty DR (1997) Science 276:1872–1874CrossRefGoogle Scholar
  31. Sugano Y, Nakano R, Sasaki K, Shoda M (2000) Efficient heterologous expression in Aspergillus oryzae of a unique dye-decolorizing peroxidase, Dyp, of Geotrichum candidum Dec 1. Appl Environ Microbiol 66:1754–1758CrossRefGoogle Scholar
  32. Sugano Y, Sasaki K, Shoda M (1999) cDNA cloning and genetic analysis of a novel decolorizing enzyme, peroxidase gene dyp from Geotrichum candidum Dec 1. J Biosci Bioeng 87:411–417CrossRefGoogle Scholar
  33. Sugano Y, Ishii Y, Shoda M (2004) Role of H164 in a unique dye -decolorizing heme peroxidase DyP. Biochem Biophys Res Commun 322:126–132CrossRefGoogle Scholar
  34. Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1997) Crystal structures of substrate binding site mutants of manganese peroxidase. J Biol Chem 272:17574–7580CrossRefGoogle Scholar
  35. Thomas PE, Ryan D, Levin W (1976) An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem 75:168–176CrossRefGoogle Scholar
  36. Wache Y, Bosser-DeRatuld A, Lhuguenot J-C, Belin J-M (2003) Effect of cis/trans isomerism of β-carotene on the ratios of volatile compounds produced during oxidative degradation. J Agric Food Chem 51:1984–1987CrossRefGoogle Scholar
  37. Welinder KG (1992) Superfamily of plant, fungal, and bacterial peroxidases. Curr Opin Struct Biol 2:388–393CrossRefGoogle Scholar
  38. Whitwam RE, Brown KR, Musick M, Natan MJ, Tien M (1997) Mutagenesis of Mn2 + -binding site of manganese peroxidase affects oxidation of Mn2 + by both compound I and compound II. Biochemistry 36:9766–9773CrossRefGoogle Scholar
  39. Winterhalter P, Rouseff RL (2002) Carotenoid-derived aroma compounds: an introduction. In: Winterhalter P, Rouseff RL (eds) Carotenoid-derived aroma compounds. American Chemical Society, Washington, p 1Google Scholar
  40. Zorn H, Langhoff S, Scheibner M, Nimtz M, Berger RG (2003a) A peroxidase of L. irina cleaves β,β-carotene to flavour compounds. Biol Chem 384:1049–1056Google Scholar
  41. Zorn H, Langhoff S, Scheibner M, Berger RG (2003b) Cleavage of β,β-carotene to flavor compounds by fungi. Appl Microbiol Biotechnol 62:331–336CrossRefGoogle Scholar
  42. Zorn H, Peters T, Nimtz M, Berger RG (2005) The secretome of Pleurotus sapidus. Proteomics 5:4832–4838CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Manuela Scheibner
    • 1
  • Bärbel Hülsdau
    • 2
  • Kateryna Zelena
    • 1
  • Manfred Nimtz
    • 3
  • Lex de Boer
    • 4
  • Ralf G. Berger
    • 1
  • Holger Zorn
    • 2
    Email author
  1. 1.Zentrum Angewandte ChemieInstitut für Lebensmittelchemie der Universität HannoverHannoverGermany
  2. 2.AG Technische BiochemieUniversität DortmundDortmundGermany
  3. 3.Helmholtz-Zentrum für InfektionsforschungAbteilung Biophysikalische AnalytikBraunschweigGermany
  4. 4.Department of Biochemistry and NutritionDSM Food SpecialtiesDelftThe Netherlands

Personalised recommendations