Applied Microbiology and Biotechnology

, Volume 77, Issue 5, pp 965–973 | Cite as

Biologically active components and nutraceuticals in the Monascus-fermented rice: a review

  • Yii-Lih Lin
  • Teng-Hsu Wang
  • Min-Hsiung Lee
  • Nan-Wei SuEmail author


Monascus-fermented rice has traditionally been used as a natural food colorant and food preservative of meat and fish for centuries. It has recently become a popular dietary supplement because of many of its bioactive constituents being discovered, including a series of active drug compounds, monacolins, indicated as the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors for reducing serum cholesterol level. The controversy of its safety has been provoked because a mycotoxin, citrinin, is also produced along with the Monascus secondary metabolites by certain strains or under certain cultivation conditions. This review introduces the basic production process and addresses on the compounds with bioactive functions. Current advances in avoiding the harmful ingredient citrinin are also discussed.


Koji Metabolites Monascus Nutraceuticals 


  1. Akihisa T, Tokuda H, Ukiya M, Kiyota A, Yasukawa K, Sakamoto N, Kimura Y, Suzuki T, Takayasu J, Nishino H (2005a) Anti-tumor-initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). Chem Biodivers 2:1305–1309CrossRefGoogle Scholar
  2. Akihisa T, Tokuda H, Yasukawa K, Ukiya M, Kiyota A, Sakamoto N, Suzuki T, Tanabe N, Nishino H (2005b) Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (red-mold rice) and their chemopreventive effects. J Agric Food Chem 53:562–565CrossRefGoogle Scholar
  3. Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, Springer J (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme a reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 77:3957–3961CrossRefGoogle Scholar
  4. Aniya Y, Ohtani II, Higa T, Miyagi C, Gibo H, Shimabukuro M, Nakanishi H, Taira J (2000) Dimerumic acid as an antioxidant of the mold, Monascus anka. Free Radic Biol Med 28:999–1004CrossRefGoogle Scholar
  5. Aniya Y, Yokomakura T, Yonamine M, Shimada K, Nagamine T, Shimabukuro M, Gibo H (1999) Screening of antioxidant action of various molds and protection of Monascus anka against experimentally induced liver injuries of rats. Gen Pharmacol 32:225–231CrossRefGoogle Scholar
  6. Bentrivedi A, Hirota M, Doi E, Kitabatake N (1993) Formation of a new toxic compound, citrinin h1, from citrinin on mild heating in water. J Chem Soc Perkin Trans 1:2167–2171Google Scholar
  7. Blanc PJ, Laussac JP, Lebars J, Lebars P, Loret MO, Pareilleux A, Prome D, Prome JC, Santerre AL, Goma G (1995) Characterization of monascidin-a from Monascus as citrinin. Int J Food Microbiol 27:201–213CrossRefGoogle Scholar
  8. Blein S, Hawrot E, Barlow P (2000) The metabotropic GABA receptor: molecular insights and their functional consequences. Cell Mol Life Sci 57:635–650CrossRefGoogle Scholar
  9. Carels M, Shepherd D (1977) Effect of different nitrogen-sources on pigment production and sporulation of Monascus species in submerged, shaken culture. Can J Microbiol 23:1360–1372CrossRefGoogle Scholar
  10. Chagas GM, Oliveira MBM, Campello AP, Kluppel M (1992) Mechanism of citrinin-induced dysfunction of mitochondria.2. Effect on respiration, enzyme-activities, and membrane-potential of liver-mitochondria. Cell Biochem Funct 10:209–216CrossRefGoogle Scholar
  11. Chagas GM, Oliveira MBM, Campello AP, Kluppel MLW (1995) Mechanism of citrinin-induced dysfunction of mitochondria. 4. Effect on Ca2+ transport. Cell Biochem Funct 13:53–59CrossRefGoogle Scholar
  12. Chang JC, Wu MC, Liu IM, Cheng JT (2006) Plasma glucose-lowering action of Hon-Chi in streptozotocin-induced diabetic rats. Horm Metab Res 38:76–81CrossRefGoogle Scholar
  13. Chen CC, Liu IM (2006) Release of acetylcholine by Hon-Chi to raise insulin secretion in Wistar rats. Neurosci Lett 404:117–121CrossRefGoogle Scholar
  14. Chen FS, Hu XQ (2005) Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin. Int J Food Microbiol 103:331–337CrossRefGoogle Scholar
  15. Chen MH, Johns MR (1993) Effect of pH and nitrogen-source on pigment production by Monascus purpureus. Appl Microbiol Biotechnol 40:132–138CrossRefGoogle Scholar
  16. Chiu CH, Ni KH, Guu YK, Pan TM (2006) Production of red mold rice using a modified Nagata type koji maker. Appl Microbiol Biotechnol 73:297–304CrossRefGoogle Scholar
  17. Ciegler A, Vesonder RF, Jackson LK (1977) Production and biological-activity of patulin and citrinin from Penicillium expansum. Appl Environ Microb 33:1004–1006Google Scholar
  18. Dhale MA, Divakar S, Kumar SU, Vijayalakshmi G (2007) Isolation and characterization of dihydromonacolin-MV from Monascus purpureus for antioxidant properties. Appl Microbiol Biotechnol 73:1197–1202CrossRefGoogle Scholar
  19. Endo A (1979) Monacolin-K, a new hypocholesterolemic agent produced by a Monascus species. J Antibiot 32:852–854Google Scholar
  20. Endo A (1980) Monacolin-K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme a reductase. J Antibiot 33:334–336Google Scholar
  21. Endo A, Hasumi K, Nakamura T, Kunishima M, Masuda M (1985a) Dihydromonacolin-L and monacolin-x, new metabolites those inhibit cholesterol-biosynthesis. J Antibiot 38:321–327Google Scholar
  22. Endo A, Hasumi K, Negishi S (1985b) Monacolin-J and monacolin-l new inhibitors of cholesterol-biosynthesis produced by Monascus ruber. J Antibiot 38:420–422Google Scholar
  23. Endo A, Hasumi K, Yamada A, Shimoda R, Takeshima H (1986) The Synthesis of compactin (Ml-236b) and monacolin-K in fungi. J Antibiot 39:1609–1610Google Scholar
  24. Fabre CE, Santerre AL, Loret MO, Baberian R, Pareilleux A, Goma G, Blanc PJ (1993) Production and food applications of the red pigments of Monascus ruber. J Food Sci 58:1099–1110CrossRefGoogle Scholar
  25. Hajjaj H, Blanc P, Groussac E, Uribelarrea JL, Goma G, Loubiere P (2000) Kinetic analysis of red pigment and citrinin production by Monascus ruber as a function of organic acid accumulation. Enzyme Microb Technol 27:619–625CrossRefGoogle Scholar
  26. Hawksworth DL, Pit JI (1983) A new taxonomy for Monascus species based on cultural and microscopical characters. Aust J Bot 31:51–61CrossRefGoogle Scholar
  27. Hesseltine CW (1965) A millenium of fungi, food and fermentation. Mycologia 57:149–197CrossRefGoogle Scholar
  28. Hirota M, Menta AB, Yoneyama K, Kitabatake N (2002) A major decomposition product, citrinin H2, from citrinin on heating with moisture. Biosci Biotechnol Biochem 66:206–210CrossRefGoogle Scholar
  29. Jeon T, Hwang SG, Hirai S, Matsui T, Yano H, Kawada T, Lim BO, Park DK (2004) Red yeast rice extracts suppress adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 cells. Life Sci 75:3195–3203CrossRefGoogle Scholar
  30. Juzlova P, Martinkova L, Kren V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16:163–170CrossRefGoogle Scholar
  31. Kerr DIB, Ong J (1995) GABAB receptors. Pharmacol Ther 67:187–246CrossRefGoogle Scholar
  32. Kimura K, Komagata D, Murakawa S, Endo A (1990) Biosynthesis of monacolins—conversion of monacolin-J to monacolin-K (Mevinolin). J Antibiot 43:1621–1622Google Scholar
  33. Kitabatake N, Trivedi AB, Doi E (1991) Thermal-decomposition and detoxification of citrinin under various moisture conditions. J Agric Food Chem 39:2240–2244CrossRefGoogle Scholar
  34. Kohama Y, Matsumoto S, Mimura T, Tanabe N, Inada A, Nakanishi T (1987) Isolation and identification of hypotensive principles in red-mold rice. Chem Pharm Bull 35:2484–2489Google Scholar
  35. Komagata D, Shimada H, Murakawa S, Endo A (1989) Biosynthesis of monacolins—conversion of monacolin-L to monacolin-J by a monooxygenase of Monascus ruber. J Antibiot 42:407–412Google Scholar
  36. Krejci ME, Bretz NS, Koechel DA (1996) Citrinin produces acute adverse changes in renal function and ultrastructure in pentobarbital-anesthetized dogs without concomitant reductions in [potassium](plasma). Toxicology 106:167–177CrossRefGoogle Scholar
  37. Lee CL, Wang JJ, Kuo SL, Pan TM (2006) Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agent—monacolin K and antiinflammation agent—monascin. Appl Microbiol Biotechnol 72:1254–1262CrossRefGoogle Scholar
  38. Li YG, Zhang F, Wang ZT, Hu ZB (2004) Identification and chemical profiling of monacolins in red yeast rice using high-performance liquid chromatography with photodiode array detector and mass spectrometry. J Pharm Biomed Anal 35:1101–1112CrossRefGoogle Scholar
  39. Lin CC, Li TC, Lai MM (2005) Efficacy and safety of Monascus purpureus Went rice in subjects with hyperlipidemia. Eur J Endocrinol 153:679–686CrossRefGoogle Scholar
  40. Lin CF (1973) Isolation and cultural conditions of Monascus sp for production of pigment in a submerged culture. J Ferment Technol 51:407–414Google Scholar
  41. Lin CF, Suen SJT (1973) Isolation of hyperpigment-productive mutants of Monascus sp-F-2. J Ferment Technol 51:757–759Google Scholar
  42. Lin TF, Demain AL (1994) Leucine interference in the production of water-soluble red Monascus pigments. Arch Microbiol 162:114–119CrossRefGoogle Scholar
  43. Lin WY, Ting YC, Pan TM (2007) Proteomic response to intracellular proteins of Monascus pilosus grown under phosphate-limited complex medium with different growth rates and pigment production. J Agric Food Chem 55:467–474CrossRefGoogle Scholar
  44. Lotong N, Suwanarit P (1990) Fermentation of Ang-Kak in plastic bags and regulation of pigmentation by initial moisture-content. J Appl Bacteriol 68:565–570Google Scholar
  45. Mabuchi H, Haba T, Tatami R, Miyamoto S, Sakai Y, Wakasugi T, Watanabe A, Koizumi J, Takeda R (1981) Effects of an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme-a reductase on serum-lipoproteins and ubiquinone-10 levels in patients with familial hypercholesterolemia. New Engl J Med 305:478–482CrossRefGoogle Scholar
  46. Martinkova L, Juzlova P, Vesely D (1995) Biological-activity of polyketide pigments produced by the fungus Monascus. J Appl Bacteriol 79:609–616Google Scholar
  47. Martinkova L, Patakova-Juzlova P, Kren V, Kucerova Z, Havlicek V, Olsovsky P, Hovorka O, Rihova B, Vesely D, Vesela D, Ulrichova J, Prikrylova V (1999) Biological activities of oligoketide pigments of Monascus purpureus. Food Addit Contam 16:15–24CrossRefGoogle Scholar
  48. McHan F, Johnson GT (1970) Zinc and amino acids: important components of a medium promoting growth of Monascus purpureus. Mycologia 62:1018–1031CrossRefGoogle Scholar
  49. Miyake T, Mori A, Kii T, Okuno T, Usui Y, Sato F, Sammoto H, Watanabe A, Kariyama M (2005) Light effects on cell development and secondary metabolism in Monascus. J Ind Microbiol Biotech 32:103–108CrossRefGoogle Scholar
  50. Pisareva E, Savov V, Kujumdzieva A (2005) Pigments and citrinin biosynthesis by fungi belonging to genus Monascus. Zeitschrift Fur Naturforschung C-a. J Biosci 60:116–120Google Scholar
  51. Ribeiro SMR, Chagas GM, Campello AP, Kluppel MLW (1997) Mechanism of citrinin-induced dysfunction of mitochondria. 5. Effect on the homeostasis of the reactive oxygen species. Cell Biochem Funct 15:203–209CrossRefGoogle Scholar
  52. Sabater-Vilar M, Maas RFM, Fink-Gremmels J (1999) Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mutat Res Genet Toxicol Environ Mutagen 444:7–16CrossRefGoogle Scholar
  53. Sato K, Naito I (1935) Acids and alcohols as nutrients for Monascus. J Agric Chem Soc Jpn 11:473–479Google Scholar
  54. Song YX (1966) T’ien-kung k’ai-wu: Chinese technology in the seventeenth century. Pennsylvania State University Press, University Park, PAGoogle Scholar
  55. Steinkraus KH (ed) (1983) Handbook of indigenous fermented foods. Dekker, New YorkGoogle Scholar
  56. Su NW, Lin YL, Lee MH, Ho CY (2005) Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effect and induces cell death on Hep G2 cells. J Agric Food Chem 53:1949–1954CrossRefGoogle Scholar
  57. Su YC (2001) Anka (Red-Koji) products and it’s research development in Taiwan (in Chinese). In: Symposium on Functional Fermentation Products. Taipei, Taiwan, pp 67–112Google Scholar
  58. Su YC, Chen WL, Fang HY, Wong HC, Wang WH (1970) Mycological study of Monascus anka (in Chinese). J Chin Agric Chem Soc 8:46–54Google Scholar
  59. Su YC, Huang JH (1976) Studies on the production of Anka-pigment. J Chin Agric Chem Soc 14:45–58Google Scholar
  60. Su YC, Wang WH (1977) Chinese red rice-anka. Symposium on Indigenous Fermented Foods. Bangkok, ThailandGoogle Scholar
  61. Taira J, Miyagi C, Aniya Y (2002) Dimerumic acid as an antioxidant from the mold, Monascus anka: the inhibition mechanisms against lipid peroxidation and hemeprotein-mediated oxidation. Biochem Pharmacol 63:1019–1026CrossRefGoogle Scholar
  62. Teng SS, Feldheim W (2000) The fermentation of rice for anka pigment production. J Ind Microbiol Biotech 25:141–146CrossRefGoogle Scholar
  63. The Ministry of Health and Welfare of Japan (2000) Monascus color. Japan’s specifications and standards for food additives (7th edn.), Sect. D257.Google Scholar
  64. van Tieghem M (1884) Monascus genre nouvear de l’ondre des Ascomycetes. Bull Soc Bot Fr 31:226–231Google Scholar
  65. Wang JJ, Lee CL, Pan TM (2003) Improvement of monacolin K, gamma-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J Ind Microbiol Biotech 30:669–676CrossRefGoogle Scholar
  66. Wang JJ, Lee CL, Pan TM (2004) Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture. J Agric Food Chem 52:6977–6982CrossRefGoogle Scholar
  67. Wang JJ, Pan TM (2003) Effect of red mold rice supplements on serum and egg yolk cholesterol levels of laying hens. J Agric Food Chem 51:4824–4829CrossRefGoogle Scholar
  68. Wang JJ, Pan TM, Shieh MJ, Hsu CC (2006) Effect of red mold rice supplements on serum and meat cholesterol levels of broilers chicken. Appl Microbiol Biotechnol 71:812–818CrossRefGoogle Scholar
  69. Wang YZ, Ju XL, Zhou YG (2005) The variability of citrinin production in Monascus type cultures. Food Microbiol 22:145–148CrossRefGoogle Scholar
  70. Watanabe M, Maemura K, Oki K, Shiraishi N, Shibayama Y, Katsu K (2006) Gamma-aminobutyric acid (GABA) and cell proliferation: focus on cancer cells. Histol Histopathol 21:1135–1141Google Scholar
  71. Went FAFC (1895) Monascus purpureus, le champignon de 1’Ang-Quac, une nouvelle Thélébolée. Ann Sci Nat Bot VIII(1):1–18Google Scholar
  72. Wong HC, Bau YS (1977) Pigmentation and antibacterial activity of fast neutron-ray and X-ray-induced strains of Monascus purpureus Went. Plant Physiol 60:578–581CrossRefGoogle Scholar
  73. Yamamoto A, Sudo H, Endo A (1980) Therapeutic effects of Ml-236b in primary hypercholesterolemia. Atherosclerosis 35:259–266CrossRefGoogle Scholar
  74. Yasukawa K, Akihisa T, Oinuma H, Kaminaga T, Kanno H, Kasahara Y, Tamura T, Kumaki K, Yamanouchi S, Takido M (1996) Inhibitory effect of taraxastane-type triterpenes on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Oncology 53:341–344CrossRefGoogle Scholar
  75. Yasukawa K, Takahashi M, Natori S, Kawai K, Yamazaki M, Takeuchi M, Takido M (1994) Azaphilones inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in 2-stage carcinogenesis in Mice. Oncology 51:108–112Google Scholar
  76. Young EM (1930) Physiological studies in relation to the taxonomy of Monascus spp. In: Juday C (ed) Transactions of the Wisconsin Academy of Sciences, Arts and Letters. Wisconsin Academy of Sciences, Madison, WI, p 227(plate 224ff)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Yii-Lih Lin
    • 1
  • Teng-Hsu Wang
    • 1
  • Min-Hsiung Lee
    • 1
  • Nan-Wei Su
    • 1
    Email author
  1. 1.Department of Agricultural ChemistryNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations