Applied Microbiology and Biotechnology

, Volume 77, Issue 5, pp 1119–1129 | Cite as

Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer

  • The Hai Pham
  • Nico Boon
  • Peter Aelterman
  • Peter Clauwaert
  • Liesje De Schamphelaire
  • Lynn Vanhaecke
  • Katrien De Maeyer
  • Monica Höfte
  • Willy Verstraete
  • Korneel Rabaey
Applied Microbial and Cell Physiology

Abstract

Previous studies revealed the abundance of Pseudomonas sp. in the microbial community of a microbial fuel cell (MFC). These bacteria can transfer electrons to the electrode via self-produced phenazine-based mediators. A MFC fed with acetate where several Pseudomonas sp. were present was found to be rich in a Gram-positive bacterium, identified as Brevibacillus sp. PTH1. Remarkably, MFCs operated with only the Brevibacillus strain in their anodes had poor electricity generation. Upon replacement of the anodic aqueous part of Brevibacillus containing MFCs with the cell-free anodic supernatants of MFCs operated with Pseudomonas sp. CMR12a, a strain producing considerable amounts of phenazine-1-carboxamide (PCN) and biosurfactants, the electricity generation was improved significantly. Supernatants of Pseudomonas sp. CMR12a_Reg, a regulatory mutant lacking the ability to produce PCN, had no similar improvement effect. Purified PCN, together with rhamnolipids as biosurfactants (1 mg L−1), could clearly improve electricity generation by Brevibacillus sp. PTH1, as well as enable this bacterium to oxidize acetate with concomitant reduction of ferric iron, supplied as goethite (FeOOH). When added alone, PCN had no observable effects on Brevibacillus’ electron transfer. This work demonstrates that metabolites produced by Pseudomonas sp. enable Gram-positive bacteria to achieve extracellular electron transfer. Possibly, this bacterial interaction is a key process in the anodic electron transfer of a MFC, enabling Brevibacillus sp. PTH1 to achieve its dominance.

Keywords

Electrochemically active bacteria Microbial interaction Electron shuttle Phenazines Biosurfactant Synergistic effect 

Supplementary material

References

  1. Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394CrossRefGoogle Scholar
  2. Allen RM, Bennetto HP (1993) Microbial fuel-cells—electricity production from carbohydrates. Appl Biochem Biotechnol 39:27–40CrossRefGoogle Scholar
  3. Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268CrossRefGoogle Scholar
  4. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  5. Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223CrossRefGoogle Scholar
  6. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555CrossRefGoogle Scholar
  7. Boon N, Goris J, De Vos P, Verstraete W, Top EM (2000) Bioaugmentation of activated sludge by an indigenous 3-chloroaniline degrading Comamonas testosteroni strain, I2gfp. Appl Environ Microbiol 66:2906–2913CrossRefGoogle Scholar
  8. Boon N, De Windt W, Verstraete W, Top EM (2002) Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol Ecol 39:101–112Google Scholar
  9. De Jonghe K, De Dobbelaere I, Sarrazyn R, Hofte M (2005) Control of Phytophthora cryptogea in the hydroponic forcing of witloof chicory with the rhamnolipid-based biosurfactant formulation PRO1. Plant Pathol 54:219–226CrossRefGoogle Scholar
  10. Fernandez RO, Pizarro RA (1997) High-performance liquid chromatographic analysis of Pseudomonas aeruginosa phenazines. J Chromatogr A 771:99–104CrossRefGoogle Scholar
  11. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358–11363CrossRefGoogle Scholar
  12. Greenberg A, Clesceri LS, Eaton AD (1992) Standard methods for the examination of water and wastewater, 18st edn. American Public Health Association, Washington, DCGoogle Scholar
  13. Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol Plant-Microb Interact 14:1351–1363CrossRefGoogle Scholar
  14. Hernandez ME, Newman DK (2001) Extracellular electron transfer. Cell Mol Life Sci 58:1562–1571CrossRefGoogle Scholar
  15. Hernandez ME, Kappler A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928CrossRefGoogle Scholar
  16. Jain DK, Collinsthompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13:271–279CrossRefGoogle Scholar
  17. Kim BH, Kim HJ, Hyun MS, Park DH (1999) Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microb Biotechnol 9:127–131CrossRefGoogle Scholar
  18. King EO, Ward MK, Raney DC (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307Google Scholar
  19. Logan BE, Hamelers B, Rozendal R, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRefGoogle Scholar
  20. Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17:327–332CrossRefGoogle Scholar
  21. Lovley DR, Phillips EJP (1986) Organic-matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689Google Scholar
  22. Madigan MT, Martinko J, Parker J (2004) Brock biology of microorganisms. Pearson, NJGoogle Scholar
  23. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465CrossRefGoogle Scholar
  24. Milliken CE, May HD (2007) Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2. Appl Microbiol Biotechnol 73:1180–1189CrossRefGoogle Scholar
  25. Muyzer G, de Waal EC, Uitterlinden A (1993) Profiling of complex microbial populations using denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700Google Scholar
  26. Ovreas L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373Google Scholar
  27. Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306CrossRefGoogle Scholar
  28. Perneel M, Heyrman J, Adiobo A, De Maeyer K, Raaijmakers JM, De Vos P, Höfte M (2007) Characterization of CMR5c and CMR12a, new fluorescent Pseudomonas strains from the cocoyam rhizosphere that produce both biosurfactants and phenazines. J Appl Microbiol 103:1007–1020Google Scholar
  29. Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6:285–292CrossRefGoogle Scholar
  30. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298CrossRefGoogle Scholar
  31. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382CrossRefGoogle Scholar
  32. Rabaey K, Boon N, Hofte M, Verstraete W (2005a) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Tech 39:3401–3408CrossRefGoogle Scholar
  33. Rabaey K, Ossieur W, Verhaege M, Verstraete W (2005b) Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci Technol 52:515–523Google Scholar
  34. Rao JR, Richter GJ, Vonsturm F, Weidlich E (1976) Performance of glucose electrodes and characteristics of different biofuel cell constructions. Bioelectrochem Bioenerg 3:139–150CrossRefGoogle Scholar
  35. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • The Hai Pham
    • 1
  • Nico Boon
    • 1
  • Peter Aelterman
    • 1
  • Peter Clauwaert
    • 1
  • Liesje De Schamphelaire
    • 1
  • Lynn Vanhaecke
    • 1
  • Katrien De Maeyer
    • 2
  • Monica Höfte
    • 2
  • Willy Verstraete
    • 1
  • Korneel Rabaey
    • 1
    • 3
  1. 1.Laboratory of Microbial Ecology and Technology (LabMET)Ghent UniversityGhentBelgium
  2. 2.Laboratory of PhytopathologyGhent UniversityGhentBelgium
  3. 3.Advanced Wastewater Management CentreUniversity of QueenslandBrisbaneAustralia

Personalised recommendations