Advertisement

Applied Microbiology and Biotechnology

, Volume 77, Issue 4, pp 751–762 | Cite as

Perspectives of biotechnological production of l-tyrosine and its applications

  • Tina Lütke-EverslohEmail author
  • Christine Nicole S. Santos
  • Gregory Stephanopoulos
Mini-Review

Abstract

The aromatic amino acid l-tyrosine is used as a dietary supplement and has promise as a valuable precursor compound for various industrial and pharmaceutical applications. In contrast to chemical production, biotechnological methods can produce l-tyrosine from biomass feedstocks under environmentally friendly and near carbon-free conditions. In this minireview, various strategies for synthesizing l-tyrosine by employing biocatalysts are discussed, including initial approaches as well as more recent advances. Whereas early attempts to engineer l-tyrosine-excreting microbes were based on auxotrophic and antimetabolite-resistant mutants, recombinant deoxyribonucleic acid technology and a vastly increasing knowledge of bacterial physiology allowed recently for more targeted genetic manipulations and strain improvements. As an alternative route, l-tyrosine can also be obtained from the conversion of phenol, pyruvate, and ammonia or phenol and serine in reactions catalyzed by the enzyme tyrosine phenol lyase.

Keywords

Aromatic amino acids Tyrosine Metabolic engineering Tyrosine phenol lyase Escherichia coli Corynebacterium glutamicum 

Notes

Acknowledgement

Financial support from the Singapore–MIT Alliance and fellowships from the Deutsche Forschungsgemeinschaft (TLE) and the National Science Foundation (CNS) are gratefully acknowledged.

References

  1. Adelberg EA (1958) Selection of bacterial mutants which excrete antagonists of antimetabolites. J Bacteriol 76:326Google Scholar
  2. Bailey JE (1991) Towards a science of metabolic engineering. Science 252:1668–1674CrossRefGoogle Scholar
  3. Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (1996) Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 52:109–121CrossRefGoogle Scholar
  4. Barnett HM (1935) Method of preparing leucine. US Patent no. US 2,009,868Google Scholar
  5. Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:411–451CrossRefGoogle Scholar
  6. Berry A (1996) Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol 14:250–256CrossRefGoogle Scholar
  7. Bongaerts J, Krämer M, Müller U, Raeven L, Wubbolts M (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3:289–300CrossRefGoogle Scholar
  8. Bonuccelli U, Del Dotto P (2006) New pharmacologic horizons in the treatment of Parkinson disease. Neurology 67:S30–S38Google Scholar
  9. Breuer M, Ditrich K, Habicher T, Hauer B, Keβeler M, Stürmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824CrossRefGoogle Scholar
  10. Burkovski A, Krämer R (2002) Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 58:265–274CrossRefGoogle Scholar
  11. Cabrera-Valladares N, Martínez A, Pinero S, Lagunas-Muñoz VH, Tinoco R, de Anda R, Vazquez-Duhalt R, Bolívar F, Gosset G (2006) Expression of the melA gene from Rhizobium etli CFN42 in Escherichia coli and characterization of the encoded tyrosinase. Enzyme Microb Technol 38:772–779CrossRefGoogle Scholar
  12. Cardinal EV (1953) Separation of tyrosine and cystine. US Patent no. US 2,650,242Google Scholar
  13. Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW (2003) Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 19:808–814CrossRefGoogle Scholar
  14. Chen S, Vincent S, Wilson DB, Ganem B (2003) Mapping of chorismate mutase and prephenate dehydrogenase domains in the Escherichia coli T-protein. Eur J Biochem 270:757–763CrossRefGoogle Scholar
  15. Cohen GN, Adelberg EA (1958) Kinetics of incorporation of p-fluorophenylalanine by a mutant of Escherichia coli resistant to this analogue. J Bacteriol 76:328–330Google Scholar
  16. Deijen JB, Orlebeke JF (1994) Effect of tyrosine on cognitive function and blood pressure under stress. Brain Res Bull 33:319–23CrossRefGoogle Scholar
  17. Dell KA, Frost JW (1993) Identification and removal of impediments to biocatalytic synthesis of aromatics from D-glucose: rate-limiting enzymes in the common pathway of aromatic amino acid biosynthesis. J Am Chem Soc 115:11581–11589CrossRefGoogle Scholar
  18. della-Cioppa G, Garger SJ, Sverlow GG, Turpen TH, Grill LK (1990) Melanin production in Escherichia coli from a cloned tyrosinase gene. Biotechnology 8:634–638CrossRefGoogle Scholar
  19. Dewick PM (1998) The biosynthesis of shikimate metabolites. Nat Prod Rep 15:17–58CrossRefGoogle Scholar
  20. Doroshenko V, Airich L, Vitushkina M, Kolokolova A, Livshits V, Mashko S (2007) YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiol Lett 275:312–318CrossRefGoogle Scholar
  21. Dosselaere F, Vanderleyden J (2001) A metabolic node in action: chorismate-utilizing enzymes in microorganisms. Crit Rev Microbiol 27:75–131CrossRefGoogle Scholar
  22. Enei H, Matsui H, Yamashita K, Okumura S, Yamada H (1972a) Distribution of tyrosine phenol lyase in microorganisms. Agric Biol Chem 36:1861–1868Google Scholar
  23. Enei H, Nakazawa H, Matsui H, Okumura S, Yamada H (1972b) Enzymatic preparation of L-tyrosine or 3,4-dihydroxyphenyl-L-alanine from pyruvate, ammonia and phenol or pyrocatechol. FEBS Lett 21:39–41CrossRefGoogle Scholar
  24. Enei H, Matsui H, Nakazawa H, Okumura S (1973a) Synthesis of L-tyrosine or 3,4-dihydroxyphenyl-L-alanine from DL-serine and phenol or pyrocathechol. Agric Biol Chem 37:493–499Google Scholar
  25. Enei H, Nakazawa H, Okumura S, Yamada H (1973b) Microbiological synthesis of L-tyrosine and 3,4-dihydroxyphenyl-L-alanine. 5. Synthesis of L-tyrosine or 3,4-dihydroxyphenyl-L-alanine from pyruvic acid, ammonia and phenol or pyrocatechol. Agric Biol Chem 37:725–735Google Scholar
  26. Fazel AM, Jensen RA (1979) Obligatory biosynthesis of L-tyrosine via pretyrosine branchlet in coryneform bacteria. J Bacteriol 138:805–815Google Scholar
  27. Fazel AM, Jensen RA (1980) Arogenate (pretyrosine) is an obligatory intermediate of L-tyrosine biosynthesis: confirmation in a microbial mutant. Proc Natl Acad Sci USA 77:1270–1273CrossRefGoogle Scholar
  28. Flores N, Xiao J, Berry A, Bolivar F, Valle F (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14:620–623CrossRefGoogle Scholar
  29. Frost JW, Draths KM (1995) Biocatalytic synthesis of aromatics from D-glucose: renewable microbial sources of aromatic compounds. Annu Rev Mircobiol 49:557–579CrossRefGoogle Scholar
  30. Frost JW, Snell KD, Frost KM (1998) Deblocking the common pathway of aromatic amino acid synthesis. US Patent no. US 5,776,736Google Scholar
  31. Fukui S, Ikeda S, Fujimura M, Yamada H, Kumagai H (1975a) Comparative studies on properties of tryptophanase and tyrosine phenol-lyase immobilized directly on Sepharose or by use of Sepharose-bound pyridoxal 5′-phosphate. Eur J Biochem 51:155–164CrossRefGoogle Scholar
  32. Fukui S, Ikeda S, Fujimura M, Yamada H, Kumagai H (1975b) Production of L-tryptophan, L-tyrosine and their analogs by use of immobilized tryptophanase and immobilized beta-tyrosinase. Eur J Appl Microbiol 1:25–39CrossRefGoogle Scholar
  33. Garner CC, Herrmann KM (1985) Operator mutations of the Escherichia coli aroF gene. J Biol Chem 260:3820–3825Google Scholar
  34. Gerth TD, Mann RW, Ayres JR (1999) Dietary supplement composition. US Patent no. US 5,925,377Google Scholar
  35. Giovannini M, Verduci E, Salvatici E, Fiori L, Riva E (2007) Phenylketonuria: dietary and therapeutic challenges. J Inherit Metab Dis 30:145–152CrossRefGoogle Scholar
  36. Hagino H, Nakayama K (1973a) L-tyrosine production by analog-resistant prototrophic mutants of glutamic acid producing bacteria. Agric Biol Chem 37:2007–2011Google Scholar
  37. Hagino H, Nakayama K (1973b) L-tyrosine production by analog-resistant mutants derived from a phenylalanine auxotroph of Corynebacterium glutamicum. Agric Biol Chem 37:2013–2023Google Scholar
  38. Hagino H, Yoshida H, Kato F, Arai Y, Katsumata R, Nakayama K (1973) L-tyrosine production by polyauxotrophic mutants of Corynebacterium glutamicum. Agric Biol Chem 37:2001–2005Google Scholar
  39. Hagino H, Nakayama K, Yoshida H (1974) Process for the production of L-tyrosine. US Patent no. US 3,787,287Google Scholar
  40. Hatti-Kaul R, Törnvall U, Gustafsson L, Börjesson P (2007) Industrial biotechnology for the production of bio-based chemicals—a cradle-to-grave perspective. Trends Biotechnol 25:119–124CrossRefGoogle Scholar
  41. Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919CrossRefGoogle Scholar
  42. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503CrossRefGoogle Scholar
  43. Hermann BG, Patel M (2007) Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology. Appl Biochem Biotechnol 136:361–388CrossRefGoogle Scholar
  44. Ikeda M (2003) Amino acid production processes. In: Scheper T, Faurie R, Thommel J (eds) Advances in biochemical engineering/biotechnology, vol. 79. Springer, Berlin, pp 1–35Google Scholar
  45. Ikeda M (2006) Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69:615–626CrossRefGoogle Scholar
  46. Ikeda M, Katsumata R (1992) Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl Environ Microbiol 58:781–785Google Scholar
  47. Ikeda M, Katsumata R (1994) Transport of aromatic amino acids and its influence on overproduction of the amino acids in Corynebacterium glutamicum. J Ferment Bioeng 78:420–425CrossRefGoogle Scholar
  48. Ikeda M, Okamoto K, Katsumata R (1999) Cloning of the transketolase gene and the effect of its dosage on aromatic amino acid production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 51:201–206CrossRefGoogle Scholar
  49. Ito H, Sakurai S, Tanaka T, Sato K, Enei H (1990a) Genetic breeding of L-tyrosine producer from Brevibacterium lactofermentum. Agric Biol Chem 54:699–705Google Scholar
  50. Ito H, Sato K, Enei H, Hirose Y (1990b) Improvement in microbial production of L-tyrosine by gene dosage effect of aroL gene encoding shikimate kinase. Agric Biol Chem 54:823–824Google Scholar
  51. Katsumata R, Ikeda M (1993) Process for producing L-tryptophan, L-tyrosine or L-phenylalanine. European patent EP 0600463B1Google Scholar
  52. Kim JH, Song JJ, Kim BG, Sung MH, Lee SG (2004) Enhanced stability of tyrosine phenol-lyase from Symbiobacterium toebii by DNA shuffling. J Microbiol Biotechnol 14:153–157CrossRefGoogle Scholar
  53. Kim DY, Rha E, Choi SL, Song JJ, Hong SP, Sung MH, Lee SG (2007) Development of bioreactor system for L-tyrosine synthesis using thermostable tyrosine phenol-lyase. J Microbiol Biotechnol 17:116–122CrossRefGoogle Scholar
  54. Koffas M, del Cardayre S (2005) Evolutionary metabolic engineering. Metab Eng 7:1–3CrossRefGoogle Scholar
  55. Krämer R (1994) Secretion of amino acids by bacteria: physiology and mechanism. FEMS Microbiol Rev 13:75–94CrossRefGoogle Scholar
  56. Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L (2003) Metabolic engineering for microbial production of shikimic acid. Metab Eng 5:277–283CrossRefGoogle Scholar
  57. Kumagai H, Yamada H, Matsui H, Ohkishi H, Ogata K (1970) Tyrosine phenol lyase. I. Purification, crystallization, and properties. J Biol Chem 245:1767–72Google Scholar
  58. Kyowa Hakko Kogyo (2006) Kyowa Hakko develops world’s first commercial production method for L-tyrosine based on fermentation; successful mass production of L-tyrosine from non-animal sources. Press release, September 26, 2006Google Scholar
  59. Lee TK, Hsiao HY (1986) Synthesis of L-tyrosine by a coupled reaction of serine hydroxymethyl-transferase and beta-tyrosinase. Enzyme Microb Technol 8:523–526CrossRefGoogle Scholar
  60. Leuchtenberger W (1996) Amino acids—technical production and use. In: Rehm H-J, Reed G, Pühler A, Stadler P (eds) Biotechnology. Products of primary metabolism, vol. 6. 2nd edn. VCH, Weinheim, pp 465–502Google Scholar
  61. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8CrossRefGoogle Scholar
  62. Lloyd-George I, Chang TMS (1993) Free and microencapsulated Erwinia herbicola for the production of tyrosine. Biomater Artif Cells Immobil Biotechnol 21:323–33Google Scholar
  63. Lloyd-George I, Chang TMS (1995) Characterization of free and alginate–polylysine–alginate microencapsulated Erwinia herbicola for the conversion of ammonia, pyruvate, and phenol into L-tyrosine. Biotechnol Bioeng 48:706–714CrossRefGoogle Scholar
  64. Lütke-Eversloh T, Stephanopoulos G (2005) Feedback inhibition of chorismate mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: generation and characterization of tyrosine-insensitive mutants. Appl Environ Microbiol 71:7224–7228CrossRefGoogle Scholar
  65. Lütke-Eversloh T, Stephanopoulos G (2007a) L-Tyrosine production by deregulated strains of Escherichia coli. Appl Microbiol Biotechnol 75:103–110CrossRefGoogle Scholar
  66. Lütke-Eversloh T, Stephanopoulos G (2007b) Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic aromatic amino acid biosynthesis gene overexpression. Metab Eng (submitted)Google Scholar
  67. Lütke-Eversloh T, Stephanopoulos G (2007c) A semi-quantitative high-throughput screening method for microbial L-tyrosine production in microtiter plates. J Ind Microbiol Biotechnol, DOI  10.1007/s10295-007-0257-x
  68. Mark AM (1939) Isolation of leucine and tyrosine from corn gluten. US Patent no. US 2,178,210Google Scholar
  69. Nagasawa T, Utagawa T, Goto J, Kim CJ, Tani Y, Kumagai H, Yamada H (1981) Syntheses of L-tyrosine-related amino acids by tyrosine phenol-lyase of Citrobacter intermedius. Eur J Biochem 117:33–40CrossRefGoogle Scholar
  70. Neri DF, Wiegmann D, Stanny RR, Shappell SA, McCardie A, McKay DL (1995) The effects of tyrosine on cognitive performance during extended wakefulness. Aviat Space Environ Med 66:313–319Google Scholar
  71. O’Brien C, Mahoney C, Tharion WJ, Sils IV, Castellani JW (2007) Dietary tyrosine benefits cognitive and psychomotor performance during body cooling. Physiol Behav 90:301–7CrossRefGoogle Scholar
  72. Oldiges M, Kunze M, Degenring D, Sprenger GA, Takors R (2004) Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol Prog 20:1623–1633CrossRefGoogle Scholar
  73. Olson MM, Templeton LJ, Suh W, Youderian P, Sariaslani FS, Gatenby AA, Van Dyk TK (2007) Production of tyrosine from sucrose or glucose achieved by rapid genetic changes to phenylalanine-producing Escherichia coli strains. Appl Microbiol Biotechnol 74:1031–1040CrossRefGoogle Scholar
  74. Para G, Lucciardi P, Baratti J (1985) Synthesis of L-tyrosine by immobilized Escherichia intermedia cells. Appl Microbiol Biotechnol 21:273–279CrossRefGoogle Scholar
  75. Patnaik R, Liao JC (1994) Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl Environ Microbiol 60:3903–3908Google Scholar
  76. Patnaik R, Spitzer RG, Liao JC (1995) Pathway engineering for production of aromatics in Escherichia coli: confirmation of stoichiometric analysis by independent modulation of AroG, TktA and Pps activities. Biotech Bioeng 46:361–370CrossRefGoogle Scholar
  77. Phillips RS, Ravichandran K, Vontersch RL (1989) Synthesis of L-tyrosine from phenol and S-(ortho-nitrophenyl)-L-cysteine catalyzed by tyrosine phenol-lyase. Enzyme Microb Technol 11:80–83CrossRefGoogle Scholar
  78. Pittard J (1996) Biosynthesis of aromatic amino acids. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol. 1. American Society of Microbiology, Washington, DC, pp 458–484Google Scholar
  79. Pittard J, Camakaris H, Yang J (2005) The TyrR regulon. Mol Microbiol 55:16–26CrossRefGoogle Scholar
  80. Pohnert G, Zhang S, Husain A, Wilson DB, Ganem B (1999) Regulation of phenylalanine biosynthesis. Studies on the mechanism of phenylalanine binding and feedback inhibition in the Escherichia coli P-protein. Biochemistry 38:12212–12217CrossRefGoogle Scholar
  81. Polen T, Krämer M, Bongaerts J, Wubbolts M, Wendisch VF (2005) The global gene expression response of Escherichia coli to L-phenylalanine. J Biotechnol 115:221–237CrossRefGoogle Scholar
  82. Qi WW, Sariaslani S, Tang XS (2002). Methods for the production of tyrosine, cinnamic acid and para-hydroxycinnamic acid. World Patent no. WO 02/090523Google Scholar
  83. Qi WW, Vannelli T, Breinig S, Ben-Bassat A, Gatenby AA, Haynie SL, Sariaslani FS (2007) Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene. Metab Eng 9:268–76CrossRefGoogle Scholar
  84. Rajput A, Rajput AH (2006) Parkinson’s disease management strategies. Expert Rev Neurother 6:91–99CrossRefGoogle Scholar
  85. Rohr FJ, Lobbregt D, Levy HL (1998) Tyrosine supplementation in the treatment of maternal phenylketonuria. Am J Clin Nutr 67:473–476Google Scholar
  86. Roy A, Mukhopadhyay SK, Chatterjee SP (1997) Production of tyrosine by auxotrophic and analogue resistant mutants of Arthrobacter globiformis. J Sci Ind Res 56:727–733Google Scholar
  87. Santos CNS, Stephanopoulos G (2007) Methods for identifying bacterial strains that produce L-tyrosine. US patent application no. 60/965,149Google Scholar
  88. Sariaslani FS (2007) Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu Rev Microbiol 61:51–69CrossRefGoogle Scholar
  89. Snell KD, Draths KM, Frost JW (1996) Synthetic modification of the Escherichia coli chromosome: enhancing the biocatalytic conversion of glucose into aromatic chemicals. J Am Chem Soc 118:5605–5614CrossRefGoogle Scholar
  90. Sprenger GA (2007a) Aromatic amino acids. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Microbiology Monographs series, vol. 5. Springer, Berlin, pp 93–127 (Steinbüchel A, series editor)CrossRefGoogle Scholar
  91. Sprenger GA (2007b) From scratch to value: engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Appl Microbiol Biotechnol 75:739–749CrossRefGoogle Scholar
  92. Steinmetzer W (1983) Process for recovering amino acids from protein hydrolysates. US Patent no. US 4,384,136Google Scholar
  93. Stephanopoulos G, Sinskey AJ (1993) Metabolic engineering: issues and methodologies. Trends Biotechnol 11:392–396CrossRefGoogle Scholar
  94. Stephanopoulos G, Simpson TW (1997) Flux amplification in complex metabolic networks. Chem Eng Sci 52:2607–2627CrossRefGoogle Scholar
  95. Stephanopoulos G, Kelleher J (2001) How to make a superior cell. Science 292:2024–2026CrossRefGoogle Scholar
  96. Sugimoto S, Shiio I (1980) Purification and properties of bifunctional 3-deoxy-D-arabino-heptulosonate 7-phosphate synthasechorismate mutase component A from Brevibacterium flavum. J Biochem 87:881–890Google Scholar
  97. Takai A, Nishi R, Joe Y, Ito H (2005) L-Tyrosine producing bacterium and a method for producing L-tyrosine. US Patent application no. 2005/0277179 A1Google Scholar
  98. Tanaka K, Ohshima K, Tokoro Y, Okii M (1972) Preparation of L-tyrosine by fermentation. US Patent no. US 3,698,997Google Scholar
  99. Tribe DE (1987) Novel microorganism and method. US Patent no. US 4,681,852Google Scholar
  100. Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 25:132–137CrossRefGoogle Scholar
  101. Tysyachnaya IV, Yakovleva VI, Kupletskaya MB, Berezin IV (1979) Kinetic study of tyrosine synthesis in tyrosine phenol lyase reaction catalyzed by Citrobacter freundii cells. Biochemistry (Moscow) 44:1739–1744Google Scholar
  102. van Spronsen FJ, van Rijn M, Bekhof J, Koch R, Smit PG (2001) Phenylketonuria: tyrosine supplementation in phenylalanine-restricted diets. Am J Clin Nutr 73:153–7Google Scholar
  103. Vannelli T, Qi WW, Sweigard J, Gatenby AA, Sariaslani FS (2007) Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metab Engin 9:142–151CrossRefGoogle Scholar
  104. Vassel B (1956) Separation of tyrosine. US Patent no. US 2,738,366Google Scholar
  105. Williams M (2005) Dietary supplements and sports performance: amino acids. J Int Soc Sports Nutr 2:63–67Google Scholar
  106. Yamada H, Kumagai H, Kashima N, Torii H, Enei H, Okumura S (1972) Synthesis of L-tyrosine from pyruvate, ammonia and phenol by crystalline tyrosine phenol lyase. Biochem Biophys Res Commun 46:370–374CrossRefGoogle Scholar
  107. Yi J, Draths KM, Li K, Frost JW (2003) Altered glucose transport and shikimate product yields in Escherichia coli. Biotechnol Prog 19:1450–1459CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Tina Lütke-Eversloh
    • 1
    • 2
    Email author
  • Christine Nicole S. Santos
    • 1
  • Gregory Stephanopoulos
    • 1
  1. 1.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Institut für Biowissenschaften, MikrobiologieUniversität RostockRostockGermany

Personalised recommendations