Applied Microbiology and Biotechnology

, Volume 77, Issue 4, pp 909–915 | Cite as

Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum

  • D. Fiocco
  • V. Capozzi
  • P. Goffin
  • P. Hols
  • Giuseppe Spano
Applied Genetics and Molecular Biotechnology

Abstract

The effect of overproducing each of the three small heat shock proteins (Hsp; Hsp 18.5, Hsp 18.55, and Hsp 19.3) was investigated in Lactobacillus plantarum strain WCFS1. Overproduction of the three genes, hsp 18.5, hsp 18.55, and hsp 19.3, translationally fused to the start codon of the ldhL gene yielded a protein of approximately 19 kDa, as estimated from Tricine sodium dodecyl sulfate–polyacrylamide gel electrophoresis in agreement with the predicted molecular weight of small Hsps. Small Hsp overproduction alleviated the reduction in growth rate triggered by exposing exponentially growing cells to heat shock (37 or 40°C) and cold shock (12°C). Moreover, overproduction of Hsp 18.55 and Hsp 19.3 led to an enhanced survival in the presence of butanol (1% v/v) or ethanol (12% v/v) treatment suggesting a potential role of L. plantarum small Hsps in solvent tolerance.

Keywords

Lactobacillus plantarum Heat shock Overexpression plasmids Solvent tolerance 

Notes

Acknowledgments

We would like to thanks Dr. Sophie Laurie (BBSRC, Plants, Microbes and Genetics Branch, Polaris House, NorthStar Avenue, Swindon, UK) for her helpful discussion and critical reading of the text. Pascal Hols is a researcher associated at FNRS. This work was financially supported by a 60% grant from the Foggia University.

References

  1. Altermann E, Russell WM, Azcarate-Peril MA et al (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci USA 102:3906–3912CrossRefGoogle Scholar
  2. Aukrust T, Brurberg MB, Nes IF (1995) Transformation of Lactobacillus by electroporation. Methods Mol Biol 47:201–208Google Scholar
  3. Bolotin A, Quinquis B, Renault P, Sorokin A et al (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558CrossRefGoogle Scholar
  4. Brady JP, Garland D, Duglas-Tabor Y, Robison WGJ, Groome A, Wawrousek EF (1997) Targeted disruption of the mouse αA-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein αB-crystallin. Proc Natl Acad Sci USA 94:884–889CrossRefGoogle Scholar
  5. Bron PA, Sally M, Hoffer I, Van Swam I, De Vos WM, Kleerebezem M (2004) Selection and characterization of conditionally active promoters in Lactobacillus plantarum, using alanine racemase as a promoter probe. Appl Environ Microbiol 70:310–317CrossRefGoogle Scholar
  6. Caspers GJ, Leunissen JAM, de Jong WW (1995) The expanding small heat-shock protein family, and structure predictions of the conserved ‘α-crystallin domain’. J Mol Evol 40:238–248CrossRefGoogle Scholar
  7. da Silveira MG, Baumgärtner M, Rombouts FM, Abee T (2004) Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni. Appl Environ Microbiol 70:2748–2755CrossRefGoogle Scholar
  8. Derzelle S, Hallet B, Ferain T, Delcour J, Hols P (2003) Improved adaptation to cold shock, stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold shock proteins. Appl Environ Microbiol 69:4285–4290CrossRefGoogle Scholar
  9. Desmond C, Fitzgerald GF, Stanton C, Ross RP (2004) Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl Environ Microbiol 70:5929–5936CrossRefGoogle Scholar
  10. El Demerdash HA, Heller KJ, Geis A (2003) Application of the shsp gene, encoding a small heat shock protein, as a food-grade selection marker for lactic acid bacteria. Appl Environ Microbiol 69:4408–12CrossRefGoogle Scholar
  11. Gandhi M, Chikindas ML (2007) Listeria: A foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15CrossRefGoogle Scholar
  12. Goffin P, Deghorain M, Mainardi JL, Tytgat I, Champomier-Verge MC, Kleerebezem M, Hols P (2005) Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum. J Bacteriol 187:6750–6761CrossRefGoogle Scholar
  13. Guzzo J, Jobin MP, Delmas F, Fortier LC, Garmyn D, Tourdot-Marechal R, Lee B, Divies C (2000) Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase. Int J Food Microbiol 55:27–31CrossRefGoogle Scholar
  14. Hecker M, Schumann W, Volker U (1996) Heat shock and general stress response in Bacillus subtilis. Mol Microbiol 19:417–428CrossRefGoogle Scholar
  15. Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520Google Scholar
  16. Jobin MB, Delmas F, Garmyn D, Diviès C, Guzzo J (1997) Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc oenos. Appl Environ Microbiol 63:609–614Google Scholar
  17. Kleerebezem M, Boekhorst J, Kranenburg R et al (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995CrossRefGoogle Scholar
  18. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  19. Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 76:317–333CrossRefGoogle Scholar
  20. Narberhaus F (2002) α-Crystallin-Type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93CrossRefGoogle Scholar
  21. O'Sullivan T, van Sinderen D, Fitzgerald G (1999) Structural and functional analysis of pCI65st, a 6.5 kb plasmid from Streptococcus thermophilus NDI-6. Microbiol 145:127–34CrossRefGoogle Scholar
  22. Pridmore RD, Berger B, Desiere F et al (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA 101:2512–2517CrossRefGoogle Scholar
  23. Rosen R, Ron EZ (2002) Proteome analysis in the study of the bacterial heat shock response. Mass Spectr Rev 21:244–265CrossRefGoogle Scholar
  24. Sambrook JE, Fritsch F, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  25. Spano G, Massa S (2006) Environmental stress response in wine Lactic Acid Bacteria: beyond Bacillus subtilis. Crit Rev Microbiol 32:77–86CrossRefGoogle Scholar
  26. Spano G, Capozzi V, Vernile A, Massa S (2004) Cloning, molecular characterization and expression analysis of two small heat shock genes isolated from wine Lactobacillus plantarum. J Appl Microbiol 97:774–782CrossRefGoogle Scholar
  27. Spano G, Beneduce L, Perrotta C, Massa S (2005) Cloning and characterization of the hsp 18.55 gene, a new member of the small heat shock genes family isolated from wine Lactobacillus plantarum. Research Microbiol 156:219–224Google Scholar
  28. Tasara T, Stephan R (2006) Cold Stress Tolerance of Listeria monocytogenes: A Review of Molecular Adaptive Mechanisms and Food Safety Implications. J Food Prot 69:1473–1484Google Scholar
  29. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl Environ Microbiol 69:4951–4965CrossRefGoogle Scholar
  30. van de Guchte M, Penaud S, Grimaldi C et al (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci USA 103:9274–9279CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • D. Fiocco
    • 1
    • 2
  • V. Capozzi
    • 1
    • 2
  • P. Goffin
    • 3
    • 4
  • P. Hols
    • 3
  • Giuseppe Spano
    • 1
    • 2
  1. 1.Department of Food ScienceFoggia UniversityFoggiaItaly
  2. 2.Bioagromed Centro di Ricerca InterdipartimentaleFoggiaItaly
  3. 3.Unité de Génétique, Institut des Sciences de la Vie (ISV)Université Catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.NIZO food researchEdeThe Netherlands

Personalised recommendations