An update on microbial carotenoid production: application of recent metabolic engineering tools

  • Amitabha Das
  • Sang-Hwal Yoon
  • Sook-Hee Lee
  • Jae-Yean Kim
  • Deok-Kun Oh
  • Seon-Won Kim


Carotenoids are ubiquitous pigments synthesized by plants, fungi, algae, and bacteria. Industrially, carotenoids are used in pharmaceuticals, neutraceuticals, and animal feed additives, as well as colorants in cosmetics and foods. Scientific interest in dietary carotenoids has increased in recent years because of their beneficial effects on human health, such as lowering the risk of cancer and enhancement of immune system function, which are attributed to their antioxidant potential. The availability of carotenoid genes from carotenogenic microbes has made possible the synthesis of carotenoids in non-carotenogenic microbes. The increasing interest in microbial sources of carotenoid is related to consumer preferences for natural additives and the potential cost effectiveness of creating carotenoids via microbial biotechnology. In this review, we will describe the recent progress made in metabolic engineering of non-carotenogenic microorganisms with particular focus on the potential of Escherichia coli for improved carotenoid productivity.


Carotenoids Metabolic engineering MEP Mevalonate Isopentenyl diphosphate Prenyl diphosphate 


  1. Alper H, Jin YS, Moxley JF, Stephanopoulos G (2005a) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7:155–164CrossRefGoogle Scholar
  2. Alper H, Miyaoku K, Stephanopoulos G (2005b) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23:612–616CrossRefGoogle Scholar
  3. Alper H, Miyaoku K, Stephanopoulos G (2006) Characterization of lycopene-overproducing E. coli strains in high cell density fermentations. Appl Microbiol Biotechnol 72:968–974CrossRefGoogle Scholar
  4. Armstrong GA (1994) Eubacteria show their true colors: genetics of carotenoid pigment biosynthesis from microbes to plants. J Bacteriol 176:4795–4802Google Scholar
  5. Armstrong GA (1997) Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu Rev Microbiol 51:629–659CrossRefGoogle Scholar
  6. Barkovich R, Liao JC (2001) Metabolic engineering of isoprenoids. Metab Eng 3:27–39CrossRefGoogle Scholar
  7. Boucher Y, Doolittle WF (2000) The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol Microbiol 37:703–716CrossRefGoogle Scholar
  8. Cheng Q (2006) Structural diversity and functional novelty of new carotenoid biosynthesis genes. J Ind Microbiol Biotechnol 33:552–559CrossRefGoogle Scholar
  9. Cunningham FX Jr, Chamovitz D, Misawa N, Gantt E, Hirschberg J (1993) Cloning and functional expression in Escherichia coli of a cyanobacterial gene for lycopene cyclase, the enzyme that catalyzes the biosynthesis of β-carotene. FEBS Lett 328:130–138CrossRefGoogle Scholar
  10. Farmer WR, Liao JC (2001) Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog 17:57–61CrossRefGoogle Scholar
  11. Fraser PD, Miura Y, Misawa N (1997) In vitro characterization of astaxanthin biosynthetic enzymes. J Biol Chem 272:6128–6135CrossRefGoogle Scholar
  12. Hamano Y, Dairi T, Yamamoto M, Kuzuyama T, Itoh N, Seto H (2002) Growth-phase dependent expression of the mevalonate pathway in a terpenoid antibiotic-producing Streptomyces strain. Biosci Biotechnol Biochem 66:808–819CrossRefGoogle Scholar
  13. Jacobson GK, Jolly SO, Sedmark JJ, Skatrud TJ, Wasileski JM (2000) Astaxanthin over-producing strains of Phaffia rhodozyma. Method for their cultivation and their use in animal feeds. United States Patent 6,413,736 B1Google Scholar
  14. Jin YS, Stephanopoulos G (2007) Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metab Eng 9:337–347CrossRefGoogle Scholar
  15. Kang MJ, Lee YM, Yoon SH, Kim JH, Ock SW, Jung KH, Shin YC, Keasling JD, Kim SW (2005) Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method. Biotechnol Bioeng 91:636–642CrossRefGoogle Scholar
  16. Kim SW, Kim JB, Jung WH, Kim JH, Jung JK (2006) Over-production of beta-carotene from metabolically engineered Escherichia coli. Biotechnol Lett 28:897–904CrossRefGoogle Scholar
  17. Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60:1–11CrossRefGoogle Scholar
  18. Lee PC, Mijts BN, Schmidt-Dannert C (2004) Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 65:538–546Google Scholar
  19. Lee PC, Petri R, Mijts BN, Watts KT, Schmidt-Dannert C (2005) Directed evolution of Escherichia coli farnesyl diphosphate synthase (IspA) reveals novel structural determinants of chain length specificity. Metab Eng 7:18–26CrossRefGoogle Scholar
  20. Lichtenthaler HK, Rohmer M, Schwender J (1997) Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiologia Plantarum 101:643–652CrossRefGoogle Scholar
  21. Martin VJ, Yoshikuni Y, Keasling JD (2001) The in vivo synthesis of plant sesquiterpenes by Escherichia coli. Biotechnol Bioeng 75:497–503CrossRefGoogle Scholar
  22. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802CrossRefGoogle Scholar
  23. Maury J, Asadollahi MA, Moller K, Clark A, Nielsen J (2005) Microbial isoprenoid production: an example of green chemistry through metabolic engineering. Adv Biochem Eng Biotechnol 100:19–51Google Scholar
  24. Mehta BJ, Obraztsova IN, Cerda-Olmedo E (2003) Mutants and intersexual heterokaryons of Blakeslea trispora for production of beta-carotene and lycopene. Appl Environ Microbiol 69:4043–4048CrossRefGoogle Scholar
  25. Misawa N, Shimada H (1998) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J Biotechnol 59:169–181CrossRefGoogle Scholar
  26. Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172:6704–6712Google Scholar
  27. Nishizaki T, Tsuge K, Itaya M, Doi N, Yanagawa H (2007) Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl Environ Microbiol 73:1355–1361CrossRefGoogle Scholar
  28. Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506CrossRefGoogle Scholar
  29. Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24:1027–1032CrossRefGoogle Scholar
  30. Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207CrossRefGoogle Scholar
  31. Raja R, Hemaiswarya S, Rengasamy R (2007) Exploitation of Dunaliella for beta-carotene production. Appl Microbiol Biotechnol 74:517–523CrossRefGoogle Scholar
  32. Rohdich F, Hecht S, Gartner K, Adam P, Krieger C, Amslinger S, Arigoni D, Bacher A, Eisenreich W (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99:1158–1163CrossRefGoogle Scholar
  33. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(Pt 2):517–524Google Scholar
  34. Ruther A, Misawa N, Boger P, Sandmann G (1997) Production of zeaxanthin in Escherichia coli transformed with different carotenogenic plasmids. Appl Microbiol Biotechnol 48:162–167CrossRefGoogle Scholar
  35. Sandmann G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385:4–12CrossRefGoogle Scholar
  36. Sandmann G (2002) Combinatorial biosynthesis of carotenoids in a heterologous host: a powerful approach for the biosynthesis of novel structures. Chem Biochem 3:629–635Google Scholar
  37. Sandmann G, Albrecht M, Schnurr G, Knorzer O, Boger P (1999) The biotechnological potential and design of novel carotenoids by gene combination in Escherichia coli. Trends Biotechnol 17:233–237CrossRefGoogle Scholar
  38. Schmidt-Dannert C, Lee PC, Mijts BN (2006) Creating carotenoid diversity in E. coli cells using combinatorial and directed evolution strategies. Phytochem. Rev. 5:67–74CrossRefGoogle Scholar
  39. Sedkova N, Tao L, Rouviere PE, Cheng Q (2005) Diversity of carotenoid synthesis gene clusters from environmental Enterobacteriaceae strains. Appl Environ Microbiol 71:8141–8146CrossRefGoogle Scholar
  40. Shiba Y, Paradise EM, Kirby J, Ro DK, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9:160–168CrossRefGoogle Scholar
  41. Smolke CD, Keasling JD (2002) Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnol Bioeng 80:762–776CrossRefGoogle Scholar
  42. Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72:7477–7484CrossRefGoogle Scholar
  43. Tao L, Wilczek J, Odom JM, Cheng Q (2006) Engineering a beta-carotene ketolase for astaxanthin production. Metab Eng 8:523–531CrossRefGoogle Scholar
  44. Tao L, Sedkova N, Yao H, Ye RW, Sharpe PL, Cheng Q (2007) Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp. Appl Microbiol Biotechnol 74:625–633CrossRefGoogle Scholar
  45. Umeno D, Tobias AV, Arnold FH (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 69:51–78CrossRefGoogle Scholar
  46. Vadali RV, Fu Y, Bennett GN, San KY (2005) Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Biotechnol Prog 21:1558–1561CrossRefGoogle Scholar
  47. Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:4342–4350CrossRefGoogle Scholar
  48. Wang GY, Keasling JD (2002) Amplification of HMG–CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metab Eng 4:193–201CrossRefGoogle Scholar
  49. Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73:980–990CrossRefGoogle Scholar
  50. Yamano S, Ishii T, Nakagawa M, Ikenaga H, Misawa N (1994) Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 58:1112–1114CrossRefGoogle Scholar
  51. Ye RW, Stead KJ, Yao H, He H (2006) Mutational and functional analysis of the beta-carotene ketolase involved in the production of canthaxanthin and astaxanthin. Appl Environ Microbiol 72:5829–5837CrossRefGoogle Scholar
  52. Ye RW, Yao H, Stead K, Wang T, Tao L, Cheng Q, Sharpe PL, Suh W, Nagel E, Arcilla D, Dragotta D, Miller ES (2007) Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a. J Ind Microbiol Biotechnol 34:289–299CrossRefGoogle Scholar
  53. Yoon SH, Lee YM, Kim JE, Lee SH, Lee JH, Kim JY, Jung KH, Shin YC, Keasling JD, Kim SW (2006) Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol Bioeng 94:1025–1032CrossRefGoogle Scholar
  54. Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Lee SH, Shin YC, Keasling JD, Kim SW (2007a) Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol 74:131–139CrossRefGoogle Scholar
  55. Yoon SH, Park HM, Kim JE, Lee SH, Choi MS, Kim JY, Oh DK, Keasling JD, Kim SW (2007b) Increased beta-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Biotechnol Prog 23:599–605CrossRefGoogle Scholar
  56. Yuan LZ, Rouviere PE, Larossa RA, Suh W (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 8:79–90CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Amitabha Das
    • 1
  • Sang-Hwal Yoon
    • 1
  • Sook-Hee Lee
    • 1
  • Jae-Yean Kim
    • 1
  • Deok-Kun Oh
    • 2
  • Seon-Won Kim
    • 1
  1. 1.Division of Applied Life Science (BK21), EB-NCRC and PMBBRCGyeongsang National UniversityJinjuSouth Korea
  2. 2.Department of Bioscience and BiotechnologyKonkuk UniversitySeoulSouth Korea

Personalised recommendations