Applied Microbiology and Biotechnology

, Volume 77, Issue 2, pp 411–425

Manipulation of intracellular magnesium levels in Saccharomyces cerevisiae with deletion of magnesium transporters

  • Bernardo M. T. da Costa
  • Katrina Cornish
  • Jay D. Keasling
Applied Microbial and Cell Physiology


Magnesium is an important divalent ion for organisms. There have been a number of studies in vitro suggesting that magnesium affects enzyme activity. Surprisingly, there have been few studies to determine the cellular mechanism for magnesium regulation. We wished to determine if magnesium levels could be regulated in vivo. It is known that Saccharomyces cerevisiae has two magnesium transporters (ALR1 and ALR2) across the plasma membrane. We created S. cerevisiae strains with deletion of one (alr1 or alr2) or both (alr1 alr2) transporters. The deletion of ALR1 resulted in a decrease in intracellular magnesium levels. An increase from 5 to 100 mM in the exogenous magnesium level increased the intracellular levels of magnesium in the alr1 and alr1 alr2 strains, whereas the expression of magnesium transporters from S. cerevisiae or Arabidopsis thaliana led to a change of the intracellular levels of magnesium in those strains. The deletion of magnesium transporters in A. cerevisiae and overexpression of magnesium transporters from A. thaliana also affected the intracellular concentrations of a range of metal ions, which suggests that cells use non-specific transporters to help regulate metal homeostasis.


Magnesium Saccharomyces cerevisiae alr1 alr2 

Supplementary material

253_2007_1177_MOESM1_ESM.doc (241 kb)
Supplemental Material(DOC 241 kb)


  1. Brandt DR, Ross EM (1986) Catecholamine-stimulated GTPase cycle. Multiple sites of regulation by beta-adrenergic receptor and Mg2+ studied in reconstituted receptor-Gs vesicles. J Biol Chem 261:1656–1664Google Scholar
  2. Bui DM et al (1999) The bacterial magnesium transporter CorA can functionally substitute for its putative homologue Mrs2p in the yeast inner mitochondrial membrane. J Biol Chem 274:20438–20443CrossRefGoogle Scholar
  3. Butt TR et al (1984) Copper metallothionein of yeast, structure of the gene, and regulation of expression. A Proc Natl Acad Sci USA 81:3332–3336CrossRefGoogle Scholar
  4. Cech SY, Maguire ME (1982) Magnesium regulation of the beta-receptor-adenylate cyclase complex .1. Effects of manganese on receptor-binding and cyclase activation. Mol Pharmacol 22:267–273Google Scholar
  5. Cech SY et al (1980) Adenylate-cyclase—the role of magnesium and other divalent-cations. Mol Cell Biochem 33:67–92CrossRefGoogle Scholar
  6. Chamnongpol S, Groisman EA (2002) Mg2+ homeostasis and avoidance of metal toxicity. Mol Microbiol 44:561–571CrossRefGoogle Scholar
  7. Culotta VC et al (1994) CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae. J Biol Chem 269:25295–25302Google Scholar
  8. Culotta VC et al (2005) Manganese transport and trafficking: lessons learned from Saccharomyces cerevisiae. Eukaryot Cell 4:1159–1165CrossRefGoogle Scholar
  9. da Costa BM et al (2005) Regulation of rubber biosynthetic rate and molecular weight in Hevea brasiliensis by metal cofactor. Biomacromolecules 6:279–289CrossRefGoogle Scholar
  10. da Costa BMT et al (2006) Magnesium ion regulation of in vitro rubber biosynthesis by Parthenium argentatum Gray. Phytochemistry 67:1621–1628CrossRefGoogle Scholar
  11. Dancis A et al (1994) S. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76:393–402CrossRefGoogle Scholar
  12. Dennis PB et al (2001) T.O.R. Mammalian, a homeostatic ATP sensor. Science 294:1102–1105CrossRefGoogle Scholar
  13. Drummond RSM et al (2006) A putative magnesium transporter AtMRS2-11 is localized to the plant chloroplast envelope membrane system. Plant Sci 170:78–89CrossRefGoogle Scholar
  14. Eide DJ (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18:441–469CrossRefGoogle Scholar
  15. Eide DJ et al (2005) Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae. Genome Biol 6:R77CrossRefGoogle Scholar
  16. Gardner RC (2003) Genes for magnesium transport. Curr Opin Plant Biol 6:263–267CrossRefGoogle Scholar
  17. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Guide to Yeast Genetics and Molecular and Cell Biology B Pt 350:87–96CrossRefGoogle Scholar
  18. Graschopf A et al (2001) The yeast plasma membrane protein Alr1 controls Mg2+ homeostasis and is subject to Mg2+-dependent control of its synthesis and degradation. J Biol Chem 276:16216–16222CrossRefGoogle Scholar
  19. Gregan J et al (2001) The mitochondrial inner membrane protein Lpe10p, a homologue of Mrs2p, is essential for magnesium homeostasis and group II intron splicing in yeast. Mol Gen Genet 264:773–781CrossRefGoogle Scholar
  20. Higashijima T et al (1987) Effects of Mg2+ and the beta gamma-subunit complex on the interactions of guanine nucleotides with G proteins. J Biol Chem 262:762–766Google Scholar
  21. Horlitz M, Klaff P (2000) Gene-specific trans-regulatory functions of magnesium for chloroplast mRNA stability in higher plants. J Biol Chem 275:35638–35645CrossRefGoogle Scholar
  22. Karin M et al (1984) Primary structure and transcription of an amplified genetic locus: the CUP1 locus of yeast. A Proc Natl Acad Sci USA 81:337–341CrossRefGoogle Scholar
  23. Li L, Kaplan J (1998) Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. J Biol Chem 273:22181–22187CrossRefGoogle Scholar
  24. Li LG et al (2001) A novel family of magnesium transport genes in arabidopsis. Plant Cell 13:2761–2775CrossRefGoogle Scholar
  25. Liu XF, Culotta VC (1999a) Mutational analysis of Saccharomyces cerevisiae Smf1p, a member of the Nramp family of metal transporters. J Mol Biol 289:885–891CrossRefGoogle Scholar
  26. Liu XF, Culotta VC (1999b) Post-translation control of Nramp metal transport in yeast. Role of metal ions and the BSD2 gene. J Biol Chem 274:4863–4868CrossRefGoogle Scholar
  27. Liu GJ et al (2002) Large Mg2+-dependent currents are associated with the increased expression of ALR1 in Saccharomyces cerevisiae. FEMS Microbiol Lett 213:231–237CrossRefGoogle Scholar
  28. MacDiarmid CW, Gardner RC (1998) Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion. J Biol Chem 273:1727–1732CrossRefGoogle Scholar
  29. MacDiarmid CW et al (2000) Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J 19:2845–2855CrossRefGoogle Scholar
  30. Maguire ME (1984) Hormone-sensitive magnesium transport and magnesium regulation of adenylate-cyclase. Trends Pharmacol Sci 5:73–77CrossRefGoogle Scholar
  31. Meijer AH et al (1998) Vectors for transcription factor cloning and target site identification by means of genetic selection in yeast. Yeast 14:1407–1415CrossRefGoogle Scholar
  32. Moncrief MBC, Maguire ME (1999) Magnesium transport in prokaryotes. J Biol Inorg Chem 4:523–527CrossRefGoogle Scholar
  33. Montell C (2003) Mg2+ homeostasis: the Mg(2+)nificent TRPM chanzymes. Curr Biol 13:R799–R801CrossRefGoogle Scholar
  34. Nadler MJS et al (2001) LTRPC7 is a Mg center dot ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595CrossRefGoogle Scholar
  35. Portnoy ME et al (2000) Saccharomyces cerevisiae expresses three functionally distinct homologues of the nramp family of metal transporters. Mol Cell Biol 20:7893–7902CrossRefGoogle Scholar
  36. Radisky D, Kaplan J (1999) Regulation of transition metal transport across the yeast plasma membrane. J Biol Chem 274:4481–4484CrossRefGoogle Scholar
  37. Romani AMP, Maguire ME (2002) Hormonal regulation of Mg2+ transport and homeostasis in eukaryotic cells. Biometals 15:271–283CrossRefGoogle Scholar
  38. Rubin H (1975) Central role for magnesium in coordinate control of metabolism and growth in animal cells. Proc Natl Acad Sci USA 72:3551–3555CrossRefGoogle Scholar
  39. Rubin H (2005) Magnesium: the missing element in molecular views of cell proliferation control. Bioessays 27:311–320CrossRefGoogle Scholar
  40. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  41. Sanui H, Rubin AH (1978) Membrane bound and cellular cationic changes associated with insulin stimulation of cultured cells. J Cell Physiol 96:265–278CrossRefGoogle Scholar
  42. Schock I et al (2000) A member of a novel Arabidopsis thaliana gene family of candidate Mg2+ ion transporters complements a yeast mitochondrial group II intron-splicing mutant. Plant J 24:489–501CrossRefGoogle Scholar
  43. Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–323CrossRefGoogle Scholar
  44. Stearman R et al (1998) YIpDCE1—an integrating plasmid for dual constitutive expression in yeast. Gene 212:197–202CrossRefGoogle Scholar
  45. Wachek M et al (2006) Oligomerization of the Mg2+-transport proteins Alr1p and Alr2p in yeast plasma membrane. FEBS J 273:4236–4249CrossRefGoogle Scholar
  46. Walker GM, Duffus JH (1980) Magnesium-ions and the control of the cell-cycle in yeast. J Cell Sci 42:329–356Google Scholar
  47. Zhao H, Eide D (1996) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA 93:2454–2458CrossRefGoogle Scholar
  48. Zsurka G et al (2001) The human mitochondrial Mrs2 protein functionally substitutes for its yeast homologue, a candidate magnesium transporter. Genomics 72:158–168CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Bernardo M. T. da Costa
    • 1
  • Katrina Cornish
    • 2
  • Jay D. Keasling
    • 1
    • 3
    • 4
  1. 1.Department of Chemical EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Yulex CorporationCarlsbadUSA
  3. 3.Department of BioengineeringUniversity of CaliforniaBerkeleyUSA
  4. 4.Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations