Advertisement

γ-Cyclodextrin: a review on enzymatic production and applications

  • Zhaofeng Li
  • Miao Wang
  • Feng Wang
  • Zhengbiao Gu
  • Guocheng Du
  • Jing Wu
  • Jian Chen
Mini-Review

Abstract

Cyclodextrins are cyclic α-1,4-glucans that are produced from starch or starch derivates using cyclodextrin glycosyltransferase (CGTase). The most common forms are α-, β-, and γ-cyclodextrins. This mini-review focuses on the enzymatic production, unique properties, and applications of γ-cyclodextrin as well as its difference with α- and β-cyclodextrins. As all known wild-type CGTases produce a mixture of α-, β-, and γ-cyclodextrins, the obtaining of a CGTase predominantly producing γ-cyclodextrin is discussed. Recently, more economic production processes for γ-cyclodextrin have been developed using improved γ-CGTases and appropriate complexing agents. Compared with α- and β-cyclodextrins, γ-cyclodextrin has a larger internal cavity, higher water solubility, and more bioavailability, so it has wider applications in many industries, especially in the food and pharmaceutical industries.

Keywords

Gamma-Cyclodextrin Cyclodextrin glycosyltransferase Enzymatic production Application Property 

Notes

Acknowledgments

We thank Dr Y. Zhu (Wageningen University, The Netherlands) for critically reading this manuscript. This work was supported financially by the Natural Science Foundation of Jiangsu Province (BK2007019), the Major State Basic Research Development Program of China (973 Program; 2007CB714306), and the National High-tech Research and Development Program of China (863 Program; 20060110Z3008).

Reference

  1. Arias MJ, Moyano JR, Munoz P, Gines JM, Justo A, Giordano F (2000) Study of omeprazole–gamma-cyclodextrin complexation in the solid state. Drug Dev Ind Pharm 26:253–259CrossRefGoogle Scholar
  2. Bar R (1989) Cyclodextrin aided bioconversions and fermentations. Trends Biotechnol 7:2–4CrossRefGoogle Scholar
  3. Becket G, Schep LJ, Tan MY (1999) Improvement of the in vitro dissolution of praziquantal by complexation with alpha-, beta and gamma-cyclodextrins. Int J Pharm 179:65–71CrossRefGoogle Scholar
  4. Bender H (1983) An improved method for the preparation of cyclooctaamylose, using starches and the cyclodextrin glycosyltransferase of Klebsiella pneumoniae M 5 al. Carbohydr Res 124:225–233CrossRefGoogle Scholar
  5. Biwer A, Antranikian G, Heinzle E (2002) Enzymatic production of cyclodextrins. Appl Microbiol Biotechnol 59:609–617CrossRefGoogle Scholar
  6. Buschmann HJ, Schollmeyer E (2002) Applications of cyclodextrins in cosmetic products: a review. J Cosmet Sci 53:575–592Google Scholar
  7. Buschmann HJ, Knittel D, Schollmeyer E (2001) New textile applications of cyclodextrins. J Incl Phenom Macrocycl Chem 40:169–172CrossRefGoogle Scholar
  8. Cao XZ, Jin ZY, Wang X, Chen F (2005) A novel cyclodextrin glycosyltransferase from an alkalophilic Bacillus species: purification and characterization. Food Res Int 38:309–314CrossRefGoogle Scholar
  9. Challa R, Ahuja A, Ali J, Khar RK (2005) Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6:E329–E357CrossRefGoogle Scholar
  10. De Bie AT, van Ommen B, Bär A (1998) Disposition of 14C-gamma-cyclodextrin in germ-free and conventional rats. Regul Toxicol Pharmacol 27:150–158CrossRefGoogle Scholar
  11. Endo T, Zheng M, Zimmermann W (2002) Enzymatic synthesis and analysis of large-ring cyclodextrins. Aust J Chem 55:39–48CrossRefGoogle Scholar
  12. Englbrecht A, Harrer G, Lebert M (1988) Biochemical and genetic characterization of a CGTase from an alkalophilic bacterium forming primarily γ-cyclodextrin. In: Huber O, Szejtli J (eds) Proceedings of the fourth international symposium on cyclodextrins. Kluwer, Dordrecht, pp 87–92Google Scholar
  13. Fava F, Gioia D, Marchetti L (1998) Cyclodextrin effects on the ex-situ bioremediation of a chronically polychlorobiphenyl-contaminated soil. Biotechnol Bioeng 58:345–55CrossRefGoogle Scholar
  14. Food Standards in Australia New Zealand (2003) Final assessment report, application a438: gamma cyclodextrin as a novel food ingredient/food additive. March 19Google Scholar
  15. French D (1957) The Schardinger dextrins. Adv Carbohydr Chem 12:189–260Google Scholar
  16. Friedman SH, Schinazi RF, Wudl F, Hill CL, DeCamp DL, Sijbesma RP, Kenyon GL (2003) Method of treatment of viral infection including hiv using water soluble fullerenes. US Patent 6613771Google Scholar
  17. Fugita Y, Tsubouchi H, Inagi Y, Tomita K, Ozaki A, Nakanishi K (1990) Purification and properties of cyclodextrin glycosyltransferase from Bacillus sp. AL-6. J Ferment Bioeng 70:150–154CrossRefGoogle Scholar
  18. George B, Govindaraj M, Ujiie H, Freeman H, Hudson S (2004) Integration of fabric formation and coloration processes. NTC Research Briefs June:C02-PH03Google Scholar
  19. Goel A, Nene S (1995) A novel cyclomaltodextrin glucanotransferase from Bacillus firmus that degrades raw starch. Biotechnol Lett 17:411–416CrossRefGoogle Scholar
  20. Han SM (1997) Direct enantiomeric separations by high performance liquid chromatography using cyclodextrins. Biomed Chromatogr 11:259–271CrossRefGoogle Scholar
  21. Harata K, Haga K, Nakamura A, Aoyagi M, Yamane M (1996) X-Ray structure of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011. Comparison of two independent molecules at 1.8 Å resolution. Acta Crystallogr D Biol Crystallogr 52:1136–1145CrossRefGoogle Scholar
  22. Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98:2035–2044CrossRefGoogle Scholar
  23. Hirano K, Ishihara T, Ogasawara S, Maeda H, Abe K, Nakajima T, Yamagata Y (2005) Molecular cloning and characterization of a novel γ-CGTase from alkalophilic Bacillus sp. Appl Microbiol Biotechnol 67:1–9CrossRefGoogle Scholar
  24. Irie T, Uekama K (1999) Cyclodextrins in peptide and protein delivery. Adv Drug Deliv Rev 36:101–123CrossRefGoogle Scholar
  25. Jarho P, Vander Velde D, Stella VJ (2000) Cyclodextrin-catalyzed deacetylation of spironolactone is pH and cyclodextrin dependent. J Pharm Sci 89:241–249CrossRefGoogle Scholar
  26. Kato T, Horikoshi K (1986) A new γ-cyclodextrin forming enzyme prodiced by Bacillus subtilis no. 313. . J Jpn Soc Starch Sci 34:137–143Google Scholar
  27. Kim MH, Sohn CB, Oh TK (1998) Cloning and sequencing of a cyclodextrin glycosyltransferase gene from Brevibacillus brevis CD162 and its expression in Escherichia coli. FEMS Microbiol Lett 164:411–418CrossRefGoogle Scholar
  28. Komatsu K, Fujiwara K, Murata Y, Braun T (1999) Aqueous solubilization of crystalline fullerenes by supramolecular complexation with γ-cyclodextrin and sulfocalix under mechanochemical high speed vibration milling. J Chem Soc Perkin Trans 1:2963–2966CrossRefGoogle Scholar
  29. Kondo H, Nakatani H, Hiromi K (1990) In vitro action of human and porcine α-amylases on cyclo-maltooligosaccharides. Carbohydr Res 204:207–213CrossRefGoogle Scholar
  30. Koppenhoefer B, Epperlein U, Christian B, Ji Y, Chen Y, Lin B (1995) Separation of enantiomers of drugs by capillary electrophoresis: part I. Gamma-cyclodextrin as chiral solvating agent. J Chromatogr 717:181–190CrossRefGoogle Scholar
  31. Koppenhoefer B, Epperlein U, Jakob A, Wuerthner S, Zhu X, Lin B (1998) Separation of enantiomers of drugs by capillary electrophoresis, part 7: gamma-cyclodextrin as chiral solvating agent. Chirality 10:548–554CrossRefGoogle Scholar
  32. Lawson CL, van Montfort R, Strokopytov B, Rozeboom HJ, Kalk KH, de Vries GE, Penninga D, Dijkhuizen L, Dijkstra BW (1994) Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J Mol Biol 236:590–600CrossRefGoogle Scholar
  33. Lai CS, Chow JM, Wolf BW (2005) Method of using gamma cyclodextrin to control blood glucose and insulin secretion. US Patent 20050215523 A1Google Scholar
  34. Lipman RD (2000) Cyclodextrin containing pressure sensitive adhesives. Eur Patent EP1206290Google Scholar
  35. Loftsson T, Brewester M (1996) Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 85:1017–1025CrossRefGoogle Scholar
  36. Marshall JJ, Miwa I (1981) Kinetic difference between hydrolyses of γ-cyclodextrin by human salivary and pancreatic α-amylases. Biochim Biophys Acta 661:142–147Google Scholar
  37. Martins RF, Hatii-Kaul R (2002) A new cyclodextrin glycosyltransferase from an alkaliphilic Bacillus agaradhaerens isolate: purification and characterization. Enzyme Microb Technol 30:116–124CrossRefGoogle Scholar
  38. Martin Del Valle EM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046CrossRefGoogle Scholar
  39. Matioli G, Zanin GM, Moraes FF (2000) Enhancement of selectiveity for producing γ-cyclodextrin. Appl Biochem Biotech 84–86:955–962CrossRefGoogle Scholar
  40. Matsuda H, Arima H (1999) Cyclodextrins in transdermal and rectaldelivery. Adv Drug Deliv Rev 36:81–99CrossRefGoogle Scholar
  41. McMahon WA, Lew CW, Branly KL (1995) Controlled release microcapsules. US Patent 5466460Google Scholar
  42. Moldenhauer JP, Cully J (2003) Method for producing a coenzyme Q10/γ-cyclodextrin complex. US Patent 20030012774 A1Google Scholar
  43. Moldenhauer JP, Regiert M, Wimmer T (1998) Complexes of gamma-cyclodextrin and retinol or retinol derivatives, processes for their preparation and their use. US Patent 5985296Google Scholar
  44. Mori S, Hirose S, Oya T, Kitahata S (1994) Purification and properties of cyclodextrin glucanotransferase from Brevibacterium sp. No. 9605. Biosci Biotech Biochem 58:1968–1972CrossRefGoogle Scholar
  45. Moyano Mendez JR, Arias Blanco MJ, Gines Dorado JM, Rabasco Alvarez AM (1995) Application of γ-cyclodextrin to the improvement of dissolution characteristics of oxazepam. Il Farmaco 50:791–799Google Scholar
  46. Munro IC, Newberne PM, Young VR, Bär A (2004) Safety assessment of γ-cyclodextrin. Regul Toxicol Pharm 39:S3–S13CrossRefGoogle Scholar
  47. Muoz-Botella S, del Castillo B, Martyn MA (1995) Cyclodetrin properties and applications of inclusion complex formation. Ars Pharm 36:187–198Google Scholar
  48. Nakagawa Y, Takada M, Ogawa K, Hatada Y, Horikoshi K (2006) Site-directed mutations in Alanine 223 and Glycine 255 in the acceptor site of gamma-cyclodextrin glucanotransferase from Alkalophilic Bacillus clarkii 7364 affect cyclodextrin production. J Biochem (Tokyo) 140:329–336Google Scholar
  49. O’Donnell CD (2001) New encapsulating molecule improves taste. prepared foods july from website: http://findarticles.com/p/articles/mi_m3289/is_7_170/ai_77107380
  50. Parsiegla G, Schmidt AK, Schulz GE (1998) Substrate binding to a cyclodextrin glycosyltransferase and mutations increasing the γ-cyclodextrin production. Eur J Biochem 255:710–717CrossRefGoogle Scholar
  51. Penninga D, Strokopytov B, Rozeboom HJ, Lawson CL, Dijkstra BW, Bergsma J, Dijkhuizen L (1995) Site directed mutations in tyrosine 195 of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 affect activity and product specificity. Biochemistry 34:3368–3376CrossRefGoogle Scholar
  52. Prabhu KS, Ramadoss CS (2000) Penicillin acylase catalyzed synthesis of penicillin-G from substrates anchored in cyclodextrins. Indian J Biochem Biophys 37:6–12Google Scholar
  53. Qi Q, Zimmermann W (2005) Cyclodextrin glucanotransferase: from gene to applications. Appl Microbiol Biotechnol 66:475–485CrossRefGoogle Scholar
  54. Qi Q, Mokhtar MN, Zimmermann W (2007) Effect of ethanol on the synthesis of large-ring cyclodextrins by cyclodextrin glucanotransferases. J Incl Phenom Macrocycl Chem 57:95–99CrossRefGoogle Scholar
  55. Rajewski RA, Stella VJ (1996) Pharmaceutical applications of cyclodextrins.2. In vivo drug delivery. J Pharm Sci 85:1142–68CrossRefGoogle Scholar
  56. Redenti E, Fronza G, Bovis G, Ventura P (1992) Application of γ-cyclodextrin to enantiomeric purity determination of a new 2-amino-tetralin derivative by H-1-NMR spectroscopy. Chirality 4:404–405CrossRefGoogle Scholar
  57. Regiert M (2005) Light-stable vitamin E by inclusion in gamma-cyclodextrin. SOEFW Int J Appl Sci 131:10–18Google Scholar
  58. Regiert M, Kupka M (2003) 2:1-Inclusion compound from beta- or gamma-cyclodextrin and alpha-tocopherol. US Patent 20030130231A1Google Scholar
  59. Regiert M, Kupka M (2004) Cosmetic composition comprising a complex of cyclodextrin and vitamin F. US Patent 20040096413 A1Google Scholar
  60. Regiert M, Moldenhauer JP (1998) Inclusion compound from gamma-cyclodextrin and retinol, production and application. Eur Patent EP0867175 A1, DE19847633 C1Google Scholar
  61. Regiert M, Wimmer T, Moldenhauer JP (1996) Application of γ-cyclodextrin for the stabilization and/or dispersion of vegetable oils containing triglycerides of polyunsaturated acids. J Inclu Pheno Mol Recogn Chem 25:213–216CrossRefGoogle Scholar
  62. Rendleman JA Jr (1992) Enhanced production of cyclomaltooctaose (γ-cyclodextrin) through selective complexation with C12 cyclic compounds. Carbohyd Res 230:343–359CrossRefGoogle Scholar
  63. Rendleman JA Jr (1993) Enhanced production of γ-cyclodextrin from corn syrup solids by means of cyclododecanone as selective complexant. Carbohydr Res 247:223–237CrossRefGoogle Scholar
  64. Rosenfeldt F, Hilton D, Pepe S, Krum H (2003) Systematic review of effect of coenzyme Q10 in physical exercise, hypertension and heart failure. Biofactors 18:91–100Google Scholar
  65. Rusa CC, Rusa M, Gomez M, Shin I, Fox J, Tonelli AE (2004) Nanostructuring high molecular weight isotactic polyolefins via processing with γ-cyclodextrin inclusion compounds. formation and characterization of polyolefin– γ-cyclodextrin inclusion compounds. Macromolecules 37:7992–7999CrossRefGoogle Scholar
  66. Sato M, Yagi Y (1991) Properties of CGTase from three types of Bacillus and production of cyclodextrins by the enzymes. In: Friedman RB (ed) Biotechnology of amylodextrin oligosaccharides, ACS symposium series 458. American Chemical Society, Washington, DC, pp 125–137Google Scholar
  67. Schmid G (1996) Preparation and industrial production of cyclodextrins. In: Atwood J, Davies ED, MacNicol DD, Vogtle F (eds) Comprehesive supermolecular chemistry, vol 3: Cyclodextrins. Pergamon, Oxford, pp 41–56Google Scholar
  68. Schneiderman E, Stalcup AM (2000) Cyclodextrins: a versatile tool in separation science. J Chromatogr B 745:83–102CrossRefGoogle Scholar
  69. Shieh W (1996) Process for producing gamma-cyclodextrin. US Patent 5550222Google Scholar
  70. Singla AK, Garg A, Aggarwal D (2002) Paclitaxel and its formulations. Int J Pharm 235:179–192CrossRefGoogle Scholar
  71. Strokopytov B, Knegtel RM, Penninga D, Rozeboom HJ, Kalk KH, Dijkhuizen L, Dijkstra BW (1996) Structure of cyclodextrin glycosyltransferase complexed with a maltononaose inhibitor at 2.6 angstrom resolution. Implications for product specificity. Biochemistry 35:4241–4249CrossRefGoogle Scholar
  72. Suvegh K, Fujiwara K, Komatsu K, Marek T, Ueda T, Vertes A, Braun T (2001) Positron lifetime in supramolecular gamma- and delta-cyclodextrin-C60 and C70 compounds. Chem Phys Lett 344:263–269CrossRefGoogle Scholar
  73. Szejtli J (1982) Cyclodextrins and their inclusion complexes. Akademiai Kiado, BudapestGoogle Scholar
  74. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753CrossRefGoogle Scholar
  75. Szejtli J (2003) Cyclodextrins in the textile industry. Starch/Stärke 55:191–196CrossRefGoogle Scholar
  76. Szejtli J (2004) Past, present, and future of cyclodextrin research. Pure Appl Chem 76:1825–1845CrossRefGoogle Scholar
  77. Szente L, Szejtli J (2004) Cyclodextrins as food ingredients. Trends Food Sci Tech 15:137–142CrossRefGoogle Scholar
  78. Takada M, Ide T, Yamamoto T, Unno T, Watanabe Y, Sone H, Yamamoto M (2003a) Novel cyclodextrin glucanotransferase, process for producing the same and process for producing cyclodextrin by using this enzyme. US Patent 20030194796 A1Google Scholar
  79. Takada M, Nakagawa Y, Yamamoto T (2003b) Biochemical and genetic analyses of a novel γ-cyclodextrin glucanotransferase from an alkalophilic Bacillus clarkii 7364. J Biochem (Tokyo) 133:317–324Google Scholar
  80. Tamura H, Takada M, Shiomi K (1999) The color stability and antioxidative activity of an anthocyanin and γ-cyclodextrin complex. In: Shibamoto T, Terao J, Osawa T (eds) Functional foods for disease prevention 1: fruits, vegetables, and teas, ACS symposium series 701. American Chemical Society, Washington, DC, pp 157–171Google Scholar
  81. Terada Y, Yanase M, Takata H, Takaha T, Okada S (1997) Cyclodextrins are not the major cyclic α-1,4-glucans produced by the initial action of cyclodextrin glucanotransferase on amylose. J Biol Chem 272:15729–15733CrossRefGoogle Scholar
  82. Terao K, Nakata D, Fukumi H, Schmid G, Arima H, Hirayama F, Uekama K (2006) Enhancement of oral bioavailability of coenzyme Q10 by complexation with γ-cyclodextrin in healthy adults. Nutr Res 26:503–508CrossRefGoogle Scholar
  83. Thoss M, Schwabe L, Fromming KH (1993) Cyclodextrin-Einschlussverbindungen von Zitronen-, Orangen-, Hopfen- und Kamillenol. Pharm Ztg Wiss 6:144–148Google Scholar
  84. Tonkova A (1998) Bacterial cyclodextrin glucanotransferase. Enzyme Micro Technol 22:678–686CrossRefGoogle Scholar
  85. Uchiyama H, Jensen JM, DuVal DL, Cetti JR, Woo RA, Archambault DL (2002) Reduction of odors from coating material. US Patent 20020132861 A1Google Scholar
  86. Uekama K, Fujinaga T, Hirayama F, Otagiri M, Yamasaki M, Seo H, Hashimoto T, Tsuruoka M (1983) Improvement of the oral bioavailability of digitalis glycosides by cyclodextrin complexation. J Pharm Sci 72:1338–1341CrossRefGoogle Scholar
  87. Uitdehaag JC, Mosi R, Kalk KH, van der Veen BA, Dijkhuizen L, Withers SG, Dijkstra BW (1999a) X-Ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family. Nat Struct Biol 6:432–436CrossRefGoogle Scholar
  88. Uitdehaag JC, Kalk KH, van Der Veen BA, Dijkhuizen L, Dijkstra BW (1999b) The cyclization mechanism of cyclodextrin glycosyltransferase (CGTase) as revealed by a γ-cyclodextrin-CGTase complex at 1.8-A resolution. J Biol Chem 274:34868–34876CrossRefGoogle Scholar
  89. Uitdehaag JC, van Alebeek GJ, van Der Veen BA, Dijkhuizen L, Dijkstra BW (2000a) Structures of maltohexaose and maltoheptaose bound at the donor sites of cyclodextrin glycosyltransferase give insight into the mechanisms of transglycosylation activity and cyclodextrin size specificity. Biochemistry 39:7772–7780CrossRefGoogle Scholar
  90. Uitdehaag JC, van der Veen BA, Dijkhuizen L, Dijkstra BW (2000b) Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the α-amylase family. Enzyme Microb Technol 30:295–304CrossRefGoogle Scholar
  91. van der Veen BA, Uitdehaag JC, Dijkstra BW, Dijkhuizen L (2000a) Engineering of cyclodextrin glycosyltransferase reaction and product specificity. Biochim Biophys Acta 1543:336–360Google Scholar
  92. van der Veen BA, van Alebeek GJ, Uitdehaag JC, Dijkstra BW, Dijkhuizen L (2000b) The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms. Eur J Biochem 267:658–665CrossRefGoogle Scholar
  93. van der Veen BA, Uitdehaag JC, Dijkstra BW, Dijkhuizen L (2000c) The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. Implications for product inhibition and product specificity. Eur J Biochem 267:3432–3441CrossRefGoogle Scholar
  94. Waalkens-Berendsen DH, Smits-van Prooije AE, Bär A (1998a) Embryotoxicity and teratogenicity study with γ-cyclodextrin in rabbits. Regul Toxicol Pharmacol 27:172–177CrossRefGoogle Scholar
  95. Waalkens-Berendsen DH, Verhagen FJ, Bär A (1998b) Embryotoxicity and teratogenicity study with γ-cyclodextrin in rats. Regul Toxicol Pharmacol 27:166–171CrossRefGoogle Scholar
  96. Wang F, Du GC, Li Y, Chen J (2004) Optimization of cultivation conditions for the production of γ-Cyclodextrin Glucanotranferase by Bacillus macorous. Food Biotechnol 18:251–264CrossRefGoogle Scholar
  97. Wang F, Du GC, Li Y, Chen J (2005) Effects of dissolved oxygen tension and two-stage oxygen supply strategy on the production of γ-CGTase by Bacillus macorous. Process Biochem 40:3468–3473CrossRefGoogle Scholar
  98. Wang F, Du GC, Li Y, Chen J (2006a) Regulation of CCR in the γ-CGTase production from Bacillus macorous by the specific cell growth rate control. Enzyme Microb Technol 39:1279–1285CrossRefGoogle Scholar
  99. Wang F, Du GC, Li Y, Chen J (2006b) Enhanced γ-CGTase production by Bacillus Macorous with membrane active substances. Food Biotechnol 20:171–181CrossRefGoogle Scholar
  100. Yang GW, Li J, Xie WM, Wang DM, Xie BT (2001) Studys on γ-CGTase from Bacillus sp. 32-3-1. Ind microbiol 31:30–32 (In Chinese)Google Scholar
  101. Zheng M, Endo T, Zimmermann W (2002) Synthesis of large-ring cyclodextrins by cyclodextrin glucanotransferases from bacterial isolates. J Incl Phenom Macrocycl Chem 44:387–390CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.School of BiotechnologyJiangnan UniversityWuxiPeople’s Republic of China
  3. 3.Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiPeople’s Republic of China
  4. 4.Key Laboratory of Food Science and Safety, Ministry of Education, School of Food Science and TechnologyJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations