Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan


We obtained carotenoid-producing microorganisms at a high frequency from water samples collected at Misasa (Tottori, Japan), a region known for its high natural radioactivity content. A comprehensive 16S rRNA gene-based phylogenetic analysis revealed that the 104 potential carotenoid producers isolated from Misasa could be classified into 38 different species belonging to seven bacterial classes (Flavobacteria, Sphingobacteria, α-Proteobacteria, γ-Proteobacteria, Deinococci, Actinobacteria, and Bacilli). Of these 38 species, 14 showed sequence similarities less than 97% to their closest identified relatives, and 9 were related to genera that have not been described earlier in terms of carotenoid production. The red-pigmented isolates belonging to Deinococci showed marked resistance to γ rays and UV irradiation, while those related to Sphingomonas showed weak resistance. The carotenoids produced by the isolates were zeaxanthin (6 strains), dihydroxyastaxanthin (24 strains), astaxanthin (27 strains), canthaxanthin (10 strains), and unidentified molecular species that were produced by the isolates related to Deinococcus, Exiguobacterium, and Flectobacillus. UV irradiation would be useful for the selective isolation of carotenoid-producing microorganisms, and that new microbial producers and other molecular species of carotenoids may potentially be identified from radioactive environments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Arrage AA, Phelps TJ, Benoit RE, Palumbo AV, White DC (1993) Bacterial sensitivity to UV light as a model for ionizing radiation resistance. J Microbiol Methods 18:127–136

  2. Asker D, Beppu T, Ueda K (2007) Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol Lett 273:140–148

  3. Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224

  4. Berry A, Janssens D, Humbelin M, Jore JP, Hoste B, Cleenwerck I, Vancanneyt M, Bretzel W, Mayer AF, Lopez-Ulibarri R, Shanmugam B, Swings J, Pasamontes L (2003) Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. Int J Syst Evol Microbiol 53:231–238

  5. Billi D, Friedmann EI, Hofer KG, Caiola MG, Ocampo-Friedmann R (2000) Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492

  6. Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids handbook. Birkhäuser, Basel, Switzerland

  7. Carbonneau MA, Melin AM, Perromat A, Clerc M (1989) The action of free radicals on Deinococcus radiodurans carotenoids. Arch Biochem Biophys 275:244–251

  8. Collins MD, Hutson RA, Grant IR, Patterson MF (2000) Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol 50(Pt 2):731–734

  9. Duc LH, Fraser PD, Tam NK, Cutting SM (2006) Carotenoids present in halotolerant Bacillus spore formers. FEMS Microbiol Lett 255:215–224

  10. Felsenstein J (1989) PHYLIP: phylogeny inference package (version 3.2). Cladistics 5:164–166

  11. Fukuoka S, Ajiki Y, Ohga T, Kawanami Y, Izumori K (2004) Production of dihydroxy C50-carotenoid by Aureobacterium sp. FERM P-18698. Biosci Biotechnol Biochem 68:2646–2648

  12. Green P, Bousfield IJ (1983) Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov., corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov.. Int J Syst Bacteriol 33:875–877

  13. Halliwell B (1996) Free radicals, proteins and DNA: oxidative damage versus redox regulation. Biochem Soc Trans 24:1023–1027

  14. Hanada S, Kawase Y, Hiraishi A, Takaichi S, Matsuura K, Shimada K, Nagashima KV (1997) Porphyrobacter tepidarius sp. nov., a moderately thermophilic aerobic photosynthetic bacterium isolated from a hot spring. Int J Syst Bacteriol 47:408–413

  15. Kametani K, Matsumura T (1983) Determination of 238U, 234U, 226Ra and 228Ra in spring waters of sanin district. Radioisotopes 32:18–21

  16. Kobayashi I, Tamura T, Sghaier H, Narumi I, Yamaguchi S, Umeda K, Inagaki K (2006) Characterization of monofunctional catalase KatA from radioresistant bacterium Deinococcus radiodurans. J Biosci Bioeng 101:315–321

  17. Krinsky NI (1989) Antioxidant functions of carotenoids. Free Radic Biol Med 7:617–635

  18. Lemee L, Peuchant E, Clerc M, Brunner M, Pfander H (1997) Deinoxanthin: a new carotenoid isolated from Deinococcus radiodurans. Tetrahedron 53:919–926

  19. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H, Huang X, Kobayashi K, Ezaki T (2004) Sphingomonas yabuuchiae sp. nov. and Brevundimonas nasdae sp. nov., isolated from the Russian space laboratory Mir. Int J Syst Evol Microbiol 54:819–825

  20. Markillie LM, Varnum SM, Hradecky P, Wong KK (1999) Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J Bacteriol 181:666–669

  21. Martinez-Laborda A, Balsalobre JM, Fontes M, Murillo FJ (1990) Accumulation of carotenoids in structural and regulatory mutants of the bacterium Myxococcus xanthus. Mol Gen Genet 223:205–210

  22. Minton KW (1994) DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 13:9–15

  23. Nishimura Y, Ino T, Iizuka H (1988) Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int J Syst Bacteriol 38:209–211

  24. Perriere G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369

  25. Phillips RW, Wiegel J, Berry CJ, Fliermans C, Peacock AD, White DC, Shimkets LJ (2002) Kineococcus radiotolerans sp. nov., a radiation-resistant, Gram-positive bacterium. Int J Syst Evol Microbiol 52:933–938

  26. Saito T, Terato H, Yamamoto O (1994) Pigments of Rubrobacter radiotolerans. Arch Microbiol 162:414–421

  27. Saito T, Miyabe Y, Ide H, Yamamoto O (1997) Hydroxyl radical scavenging ability of bacterioruberin. Radiat Phys Chem 50:267–269

  28. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

  29. Shahmohammadi HR, Asgarani E, Terato H, Ide H, Yamamoto O (1997) Effects of 60Co gamma-rays, ultraviolet light, and mitomycin C on Halobacterium salinarium and Thiobacillus intermedius. J Radiat Res 38:37–43

  30. Shahmohammadi HR, Asgarani E, Terato H, Saito T, Ohyama Y, Gekko K, Yamamoto O, Ide H (1998) Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res (Tokyo) 39:251–262

  31. Silva C, Cabral JM, van Keulen F (2004) Isolation of a beta-carotene over-producing soil bacterium, Sphingomonas sp. Biotechnol Lett 26:257–262

  32. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood RA, Krieg NR (ed) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654

  33. Suzuki K, Collins MD, Iijima E, Komagata K (1988) Chemotaxonomic characterization of a radiotolerant bacterium, Arthorobacter radiotolerans: description of Rubrobacter radiotolerans gen. nov., comb. nov.. FEMS Microbiol Lett 52:33–40

  34. Takano H, Obitsu S, Beppu T, Ueda K (2005) Light-induced carotenogenesis in Streptomyces coelicolor A3(2): identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J Bacteriol 187:1825–1832

  35. Tao L, Yao H, Cheng Q (2007) Genes from a Dietzia sp. for synthesis of C(40) and C(50) beta-cyclic carotenoids. Gene 386:90–97

  36. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

  37. Yamaoka K, Mitsunobu F, Kojima S, Shibakura M, Kataoka T, Hanamoto K, Tanizaki Y (2005) The elevation of p53 protein level and SOD activity in the resident blood of the Misasa radon hot spring district. J Radiat Res 46:21–24

  38. Yokoyama A, Izumida H, Miki W (1994) Production of astaxanthin and 4-ketozeaxanthin by the marine bacterium, Agrobacterium aurantiacum. Biosci Biotech Biochem 58:1842–1844

  39. Yokoyama A, Miki W, Izumida H, Shizuri Y (1996) New trihydroxy-keto-carotenoids isolated from an astaxanthin-producing marine bacterium. Biosci Biotech Biochem 60:200–203

Download references


We dedicate this paper to the late Professor Keiji Yano. We thank Akira Seto for assistance in sample collection and Hoshio Eguchi for technical assistance. This study was supported by the 21st century COE program of the Ministry of Education, Culture, Sports, Science and Technology, Japan. D. A. was supported by a grant from Japan Society for Promotion of Science.

Author information

Correspondence to Kenji Ueda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Asker, D., Beppu, T. & Ueda, K. Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl Microbiol Biotechnol 77, 383–392 (2007).

Download citation


  • Carotenoids
  • Irradiation
  • Misasa
  • Bacteria
  • Phylogeny
  • Diversity