Advertisement

Applied Microbiology and Biotechnology

, Volume 76, Issue 6, pp 1209–1221 | Cite as

Bacterial metabolism of long-chain n-alkanes

  • Alexander WentzelEmail author
  • Trond E. Ellingsen
  • Hans-Kristian Kotlar
  • Sergey B. Zotchev
  • Mimmi Throne-Holst
Mini-Review

Abstract

Degradation of alkanes is a widespread phenomenon in nature, and numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing these substrates as a carbon and energy source have been isolated and characterized. In this review, we summarize recent advances in the understanding of bacterial metabolism of long-chain n-alkanes. Bacterial strategies for accessing these highly hydrophobic substrates are presented, along with systems for their enzymatic degradation and conversion into products of potential industrial value. We further summarize the current knowledge on the regulation of bacterial long-chain n-alkane metabolism and survey progress in understanding bacterial pathways for utilization of n-alkanes under anaerobic conditions.

Keywords

Bacterial alkane metabolism Alkane degradation Long-chain n-alkanes Anaerobic Aerobic Wax ester 

References

  1. Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14Google Scholar
  2. Aeckersberg F, Rainey FA, Widdel F (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369Google Scholar
  3. Alain K, Holler T, Musat F, Elvert M, Treude T, Kruger M (2006) Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environ Microbiol 8:574–590Google Scholar
  4. Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376Google Scholar
  5. Amund OO, Higgins IJ (1985) The degradation of 1-phenylalkanes by an oil-degrading strain of Acinetobacter lwoffii. Antonie Van Leeuwenhoek 51:45–56Google Scholar
  6. Andreoni V, Bernasconi S, Colombo M, van Beilen JB, Cavalca L (2000) Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Environ Microbiol 2:572–577Google Scholar
  7. Antic MP, Jovancicevic BS, Ilic M, Vrvic MM, Schwarzbauer J (2006) Petroleum pollutant degradation by surface water microorganisms. Environ Sci Pollut Res 13:320–327Google Scholar
  8. Ashraf W, Mihdhir A, Murrell JC (1994) Bacterial oxidation of propane. FEMS Microbiol Lett 122:1–6Google Scholar
  9. Azevedo LFA, Teixeira AM (2003) A critical review of the modeling of wax deposition mechanisms. Petrol Sci Technol 21:393–408Google Scholar
  10. Baptist JN, Gholson RK, Coon MJ (1963) Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. Biochim Biophys Acta 69:40–47Google Scholar
  11. Bonin P, Cravo-Laureau C, Michotey V, Hirschler-Rea A (2004) The anaerobic hydrocarbon biodegrading bacteria: an overview. Ophelia 58:243–254Google Scholar
  12. Bouchez-Naitali M, Rakatozafy H, Marchal R, Leveau JY, Vandecasteele JP (1999) Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86:421–428Google Scholar
  13. Boulton CA, Ratledge C (1984) The physiology of hydrocarbon-utilizing microorganisms. In: Wiesemann A (eds) Enzyme and fermentation biotechnology. Halstead Press, Wiley, New York, pp 11–77Google Scholar
  14. Britton LN (1984) Microbial degradation of aliphatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New YorkGoogle Scholar
  15. Burger ED, Perkins TK, Striegler JH (1981) Studies of wax deposition in the trans Alaska pipeline. J Petrol Technol 33:1075–1086Google Scholar
  16. Callaghan AV, Gieg LM, Kropp KG, Suflita JM, Young LY (2006) Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium. Appl Environ Microbiol 72:4274–4282Google Scholar
  17. Canosa I, Yuste L, Rojo F (1999) Role of the alternative sigma factor sigmaS in expression of the AlkS regulator of the Pseudomonas oleovorans alkane degradation pathway. J Bacteriol 181:1748–1754Google Scholar
  18. Canosa I, Sanchez-Romero JM, Yuste L, Rojo F (2000) A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway. Mol Microbiol 35:791–799Google Scholar
  19. Chaerun SK, Tazaki K, Asada R, Kogure K (2004) Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the Sea of Japan: isolation and characterization of hydrocarbon-degrading bacteria. Environ Int 30:911–922Google Scholar
  20. Chaillan F, Le Fleche A, Bury E, Phantavong YH, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155:587–595Google Scholar
  21. Chaineau CH, Morel J, Dupont J, Bury E, Oudot J (1999) Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. Sci Total Environ 227:237–247Google Scholar
  22. Chakrabarty AM, Chou G, Gunsalus IC (1973) Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc Natl Acad Sci USA 70:1137–1140Google Scholar
  23. Chen Q, Janssen DB, Witholt B (1996) Physiological changes and alk gene instability in Pseudomonas oleovorans during induction and expression of alk genes. J Bacteriol 178:5508–5512Google Scholar
  24. Churchill SA, Harper JP, Churchill PF (1999) Isolation and characterization of a Mycobacterium species capable of degrading three- and four-ring aromatic and aliphatic hydrocarbons. Appl Environ Microbiol 65:549–552Google Scholar
  25. Correra S, Fasano A, Fusi L, Merino-Garcia D (2007) Calculating deposit formation in the pipelining of waxy crude oils. Meccanica 42:149–165Google Scholar
  26. Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9:177–186Google Scholar
  27. Cravo-Laureau C, Matheron R, Cayol JL, Joulian C, Hirschler-Rea A (2004) Desulfatibacillum aliphaticivorans gen. nov., sp nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 54:77–83Google Scholar
  28. Cravo-Laureau C, Grossi V, Raphel D, Matheron R, Hirschler-Rea A (2005) Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T. Appl Environ Microbiol 71:3458–3467Google Scholar
  29. da Cunha CD, Rosado AS, Sebastian GV, Seldin L, von der Weid I (2006) Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. Appl Microbiol Biotechnol 73:949–959Google Scholar
  30. Davidova IA, Gieg LM, Nanny M, Kropp KG, Suflita JM (2005) Stable isotopic studies of n-alkane metabolism by a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 71:8174–8182Google Scholar
  31. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64Google Scholar
  32. DeWitt S, Ervin JL, Howes-Orchison D, Dalietos D, Neidleman SL, Geigert J (1982) Saturated and unsaturated wax ester production by Acinetobacter sp. H01-N grown on C16–C20 n-alkanes. J Am Oil Chem Soc 59:69–74Google Scholar
  33. Doumenq P, Aries E, Asia L, Acquaviva M, Artaud J, Gilewicz M, Mille G, Bertrand JC (2001) Influence of n-alkanes and petroleum on fatty acid composition of a hydrocarbonoclastic bacterium: Marinobacter hydrocarbonoclasticus strain 617. Chemosphere 44:519–528Google Scholar
  34. Dunlap KR, Perry JJ (1968) Effect of substrate on the fatty acid composition of hydrocarbon- and ketone-utilizing microorganisms. J Bacteriol 96:318–321Google Scholar
  35. Eggink G, Engel H, Meijer WG, Otten J, Kingma J, Witholt B (1988) Alkane utilization in Pseudomonas oleovorans. Structure and function of the regulatory locus alkR. J Biol Chem 263:13400–13405Google Scholar
  36. Ehrenreich P, Behrends A, Harder J, Widdel F (2000) Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch Microbiol 173:58–64Google Scholar
  37. Engelhardt MA, Daly K, Swannell RP, Head IM (2001) Isolation and characterization of a novel hydrocarbon-degrading, gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J Appl Microbiol 90:237–247Google Scholar
  38. Ervin JL, Geigert J, Neidlerman SL, Wadsworth J (1984) Substrate-dependent and growth temperature-dependent changes in the wax ester compositions produced by Acinetobacter sp. strain H01-N. In: Ratledge C, Dawson P, Rattray L (eds) Biotechnology for the oils and fats industry. American Oil Chemists Society, Champaign, IL, pp 217–222Google Scholar
  39. Favre-Bulle O, Witholt B (1992) Biooxidation of n-octane by a recombinant Escherichia coli in a two-liquid-phase system: effect of medium components on cell growth and alkane oxidation activity. Enzyme Microb Technol 14: 931–937Google Scholar
  40. Feitkenhauer H, Müller R, Märkl H (2003) Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 6070°C by Thermus and Bacillus spp. Biodegradation 14: 367–372Google Scholar
  41. Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA 104: 5602–5607Google Scholar
  42. Fennewald M, Benson S, Oppici M, Shapiro J (1979) Insertion element analysis and mapping of the Pseudomonas plasmid alk regulon. J Bacteriol 139:940–952Google Scholar
  43. Fixter LM, Nagi MN, McCormack JG, Fewson CA (1986) Structure, distribution and function of wax esters in Acinetobacter calcoaceticus. J Gen Microbiol 132:3147–3157Google Scholar
  44. Fletcher M (1996) Bacterial attachment in aquatic environments: a diversity of surfaces and adhesion strategies. In: Fletcher M (ed) Bacterial adhesion: molecular and ecological diversity. Wiley-Liss, New York, pp 1–24Google Scholar
  45. Foght JM, Fedorak PM, A. PM, Gray MR (1997) Biocatalytic upgrading of petroleum distillates: ring cleavage of aromatic hydrocarbons and heterocycles commonly present in petroleum distillates. In: Joint meeting of The Petroleum Society (48th Annual Technical Meeting) and BIOMINET, Calgary, paper 97-13, pp 1–9Google Scholar
  46. Foster JW (1962) Bacterial oxidation of hydrocarbons. In: Foster JW (ed) Oxygenases. Academic, New York, pp 241–261Google Scholar
  47. Fox MG, Dickinson FM, Ratledge C (1992) Long-chain alcohol and aldehyde dehydrogenase activities in Acinetobacter calcoaceticus strain HO1-N. J Gen Microbiol 138:1963–1972Google Scholar
  48. Gallagher IH (1971) Occurrence of waxes in Acinetobacter. J Gen Microbiol 68:245–247Google Scholar
  49. Geissdorfer W, Kok RG, Ratajczak A, Hellingwerf KJ, Hillen W (1999) The genes rubA and rubB for alkane degradation in Acinetobacter sp. strain ADP1 are in an operon with estB, encoding an esterase, and oxyR. J Bacteriol 181:4292–4298Google Scholar
  50. Grund A, Shapiro J, Fennewald M, Bacha P, Leahy J, Markbreiter K, Nieder M, Toepfer M (1975) Regulation of alkane oxidation in Pseudomonas putida. J Bacteriol 123:546–556Google Scholar
  51. Haferburg D, Hommel R, Claus R, Kleber HP (1986) Extracellular microbial lipids as biosurfactants. Adv Biochem Eng Biotechnol 33:53–93Google Scholar
  52. Hao R, Lu A, Wang G (2004) Crude-oil-degrading thermophilic bacterium isolated from an oil field. Can J Microbiol 50:175–182Google Scholar
  53. Hills G (2003) Industrial use of lipases to produce fatty acid esters. Eur J Lipid Sci Technol 105:601–607Google Scholar
  54. Hommel RK (1994) Formation and function of biosurfactants for degradation of water-insoluble substrates. In: Ratledge C (ed) Biochemistry of microbial biodegradation. Kluwer Academic Publishers, Dordrecht, pp 63–87Google Scholar
  55. Ishige T, Tani A, Sakai Y, Kato N (2003) Wax ester production by bacteria. Curr Opin Microbiol 6:244–250Google Scholar
  56. Ishige T, Tani A, Takabe K, Kawasaki K, Sakai Y, Kato N (2002) Wax ester production from n-alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme A reductase. Appl Environ Microbiol 68:1192–1195Google Scholar
  57. Juni E, Janik A (1969) Transformation of Acinetobacter calco-aceticus (Bacterium anitratum). J Bacteriol 98:281–288Google Scholar
  58. Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082Google Scholar
  59. Kalscheuer R, Uthoff SHL, Steinbüchel A (2003) In vitro and in vivo biosynthesis of wax diesters by an unspecific bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase from Acinetobacter calcoaceticus ADP1. Eur J Lipid Sci Technol 105:578–584Google Scholar
  60. Kalscheuer R, Stöveken T, Luftmann H, Malkus U, Reichelt R, Steinbüchel A (2006) Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters. Appl Environ Microbiol 72:1373–1379Google Scholar
  61. Kasai Y, Kishira H, Syutsubo K, Harayama S (2001) Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ Microbiol 3:246–255Google Scholar
  62. Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4:141–147Google Scholar
  63. Kato T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2001) Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. J Biosci Bioeng 91:64–70Google Scholar
  64. Kleber HP, Claus R, Asperger O (1983) Enzymologie der n-Alkanoxidation bei Acinetobacter. Acta Biotechnol 3:251–260Google Scholar
  65. Kok M, Oldenhuis R, van der Linden MP, Meulenberg CH, Kingma J, Witholt B (1989a) The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase. J Biol Chem 264:5442–5451Google Scholar
  66. Kok M, Oldenhuis R, van der Linden MP, Raatjes P, Kingma J, van Lelyveld PH, Witholt B (1989b) The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. J Biol Chem 264:5435–5441Google Scholar
  67. Koma D, Hasumi F, Yamamoto E, Ohta T, Chung SY, Kubo M (2001) Biodegradation of long-chain n-paraffins from waste oil of car engine by Acinetobacter sp. J Biosci Bioeng 91:94–96Google Scholar
  68. Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 185:7120–7128Google Scholar
  69. Kotlar HK, Wentzel A, Throne-Holst M, Zotchev SB, Ellingsen TE (2007) Wax control by biocatalytic degradation in high-paraffinic crude oils. In: SPE international symposium on Oilfield Chemistry, Houston, TX, paper SPE 106420Google Scholar
  70. Kropp KG, Davidova IA, Suflita JM (2000) Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 66:5393–5398Google Scholar
  71. Kunihiro N, Haruki M, Takano K, Morikawa M, Kanaya S (2005) Isolation and characterization of Rhodococcus sp. strains TMP2 and T12 that degrade 2,6,10,14-tetramethylpentadecane (pristane) at moderately low temperatures. J Biotechnol 115:129–136Google Scholar
  72. Lal B, Khanna S (1996) Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol 81:355–362Google Scholar
  73. Lazar I, Voicu A, Nicolescu C, Mucenica D, Dobrota S, Petrisor IG, Stefanescu M, Sandulescu L (1999) The use of naturally occurring selectively isolated bacteria for inhibiting paraffin deposition. J Pet Sci Eng 22:161–169Google Scholar
  74. Lee M, Kim MK, Singleton I, Goodfellow M, Lee ST (2006) Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. J Appl Microbiol 100:325–333Google Scholar
  75. Leon V, Kumar M (2005) Biological upgrading of heavy crude oil. Biotechnol Bioprocess Eng 10:471–481Google Scholar
  76. Maeng JH, Sakai Y, Tani Y, Kato N (1996) Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1. J Bacteriol 178: 3695–3700Google Scholar
  77. Maier RM (2003) Biosurfactants: evolution and diversity in bacteria. Adv Appl Microbiol 52:101–121Google Scholar
  78. Marchant R, Sharkey FH, Banat IM, Rahman TJ, Perfumo A (2006) The degradation of n-hexadecane in soil by thermophilic geobacilli. FEMS Microbiol Ecol 56:44–54Google Scholar
  79. Marin MM, Yuste L, Rojo F (2003) Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa. J Bacteriol 185:3232–3237Google Scholar
  80. Marin MM, Smits TH, van Beilen JB, Rojo F (2001) The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J Bacteriol 183:4202–4209Google Scholar
  81. Mateles RI, Baruah JN, Tannenbaum SR (1967) Growth of a thermophilic bacterium on hydrocarbons: a new source of single-cell protein. Science 157:1322–1323Google Scholar
  82. McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol 9:165–176Google Scholar
  83. Meintanis C, Chalkou KI, Kormas KA, Karagouni AD (2006) Biodegradation of crude oil by thermophilic bacteria isolated from a volcano island. Biodegradation 17:105–111Google Scholar
  84. Milekhina EI, Borzenkov IA, Zvyagintseva IS, Kostrikina NA, Belyaev SS (1998) Characterization of hydrocarbon-oxidizing Rhodococcus erythropolis strain isolated from an oil field. Microbiology (English translation of Mikrobiologiya) 67:328–332Google Scholar
  85. Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515Google Scholar
  86. Murphy DJ, Vance J (1999) Mechanisms of lipid-body formation. Trends Biochem Sci 24:109–115Google Scholar
  87. Naik PR, Sakthivel N (2006) Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Res Microbiol 157:538–546Google Scholar
  88. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446Google Scholar
  89. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166Google Scholar
  90. Patel RN, Mazumdar S, Ornston LN (1975) Beta-ketoadipate enol-lactone hydrolases I and II from Acinetobacter calcoaceticus. J Biol Chem 250:6567Google Scholar
  91. Perry JJ, Scheld HW (1968) Oxidation of hydrocarbons by microorganisms isolated from soil. Can J Microbiol 14:403–407Google Scholar
  92. Perry JJ (1985) Isolation and characterization of thermophilic, hydrocarbon utilizing bacteria. Adv Aquat Microbiol 3:109–139Google Scholar
  93. Phillips WE, Perry JJ (1976) Thermomicrobium fosteri sp. nov., a hydrocarbon utilizing obligate thermophile. Int J System Bacteriol 26:220–225CrossRefGoogle Scholar
  94. Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F (2001) Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: Evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol 183:1707–1715Google Scholar
  95. Radwan SS, Sorkhoh NA, Felzmann H, El-Desouky AF (1996) Uptake and utilization of n-octacosane and n-nonacosane by Arthrobacter nicotianae KCC B35. J Appl Bacteriol 80:370–374Google Scholar
  96. Ratajczak A, Geissdorfer W, Hillen W (1998) Expression of alkane hydroxylase from Acinetobacter sp. Strain ADP1 is induced by a broad range of n-alkanes and requires the transcriptional activator AlkR. J Bacteriol 180:5822–5827Google Scholar
  97. Reiser S, Somerville C (1997) Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase. J Bacteriol 179:2969–2975Google Scholar
  98. Reisfeld A, Rosenberg E, Gutnick D (1972) Microbial degradation of crude oil: factors affecting the dispersion in sea water by mixed and pure cultures. Appl Microbiol 24:363–368Google Scholar
  99. Rios-Hernandez LA, Gieg LM, Suflita JM (2003) Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer. Appl Environ Microbiol 69:434–443Google Scholar
  100. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252Google Scholar
  101. Rosenberg E (1993) Exploiting microbial growth on hydrocarbons—new markets. Trends Biotechnol 11:419–424Google Scholar
  102. Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162Google Scholar
  103. Rosenberg M, Bayer EA, Delarea J, Rosenberg E (1982) Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Appl Environ Microbiol 44:929–937Google Scholar
  104. Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458Google Scholar
  105. Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN (2006) Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J Bacteriol 188:3763–3773Google Scholar
  106. Sakai Y, Maeng JH, Tani Y, Kato N (1994) Use of long-chain n-alkanes (C13–C44) by an isolate, Acinetobacter sp. M-1. Biosci Biotechnol Biochem 58:2128–2130CrossRefGoogle Scholar
  107. Sayavedra-Soto LA, Doughty DM, Kurth EG, Bottomley PJ, Arp DJ (2005) Product and product-independent induction of butane oxidation in Pseudomonas butanovora. FEMS Microbiol Lett 250:111–116Google Scholar
  108. Schneiker S, Martins dos Santos VA, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Puhler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorholter FJ, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004Google Scholar
  109. Sharma SL, Pant A (2000) Biodegradation and conversion of alkanes and crude oil by a marine Rhodococcus. Biodegradation 11:289–294Google Scholar
  110. Singer ME, Finnerty WR (1984) Microbial metabolism of straight-chain and branched alkanes. In: Atlas RM (ed) Microbial metabolism of straight-chain and branched alkanes. Macmillan Publishing Company, New York, pp 1–60Google Scholar
  111. Singer ME, Finnerty WR (1985) Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism. J Bacteriol 164:1011–1016Google Scholar
  112. Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2. Application aspects. Biotechnol Adv 25:99–121Google Scholar
  113. Singh P, Venkatesan R, Scott Fogler H, Nagarajan NR (2001) Morphological evolution of thick wax deposits during aging. AIChE J 47:6–18Google Scholar
  114. Smits TH, Balada SB, Witholt B, van Beilen JB (2002) Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J Bacteriol 184:1733–1742Google Scholar
  115. So CM, Young LY (1999a) Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01. Appl Environ Microbiol 65:5532–5540Google Scholar
  116. So CM, Young LY (1999b) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65:2969–2976Google Scholar
  117. So CM, Phelps CD, Young LY (2003) Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol 69:3892–3900Google Scholar
  118. Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS (1990) Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait. Environ Pollut 65:1–17Google Scholar
  119. Sorkhoh NA, Ibrahim AS, Ghannoum MA, Radwan SS (1993) High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwaiti desert. Appl Microbiol Biotechnol 39:123–126Google Scholar
  120. Spormann AM, Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105Google Scholar
  121. Sullivan JP, Dickinson D, Chase HA (1998) Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation. Crit Rev Microbiol 24:335–373Google Scholar
  122. Syutsubo K, Kishira H, Harayama S (2001) Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanivorax strains. Environ Microbiol 3:371–379Google Scholar
  123. Tani A, Ishige T, Sakai Y, Kato N (2001) Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1. J Bacteriol 183:1819–1823Google Scholar
  124. Thijsse GJE, Linden ACvd (1958) n-Alkane oxidation by Pseudomonas. Antonie Van Leeuwenhoek 24:298–308Google Scholar
  125. Throne-Holst M, Markussen S, Winnberg A, Ellingsen TE, Kotlar HK, Zotchev SB (2006) Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases. Appl Microbiol Biotechnol 72:53–360Google Scholar
  126. Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73:3327–3332Google Scholar
  127. Uthoff S, Stöveken T, Weber N, Vosmann K, Klein E, Kalscheuer R, Steinbüchel A (2005) Thio wax ester biosynthesis utilizing the unspecific bifunctional wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase of Acinetobacter sp. strain ADP1. Appl Environ Microbiol 71:790–796Google Scholar
  128. van Beilen JB, Eggink G, Enequist H, Bos R, Witholt B (1992) DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans. Mol Microbiol 6:3121–3136Google Scholar
  129. van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21Google Scholar
  130. van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Röthlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65Google Scholar
  131. van Beilen JB, Li Z, Duetz WA, Smits TH, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440Google Scholar
  132. van Beilen JB, Marin MM, Smits TH, Röthlisberger M, Franchini AG, Witholt B, Rojo F (2004) Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ Microbiol 6:264–273Google Scholar
  133. van Beilen JB, Panke S, Lucchini S, Franchini AG, Röthlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630Google Scholar
  134. van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549Google Scholar
  135. van Hamme JD, Singh A, Ward OP (2006) Physiological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620Google Scholar
  136. van Beilen JB, Smits TH, Whyte LG, Schorcht S, Röthlisberger M, Plaggemeier T, Engesser KH, Witholt B (2002) Alkane hydroxylase homologues in gram-positive strains. Environ Microbiol 4:676–682Google Scholar
  137. van Beilen JB, Wubbolts MG, Witholt B (1994a) Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5:161–174Google Scholar
  138. van Beilen JB, Kingma J, Witholt B (1994b) Substrate specificity of the alkane hydroxylase system of Pseudomonas oleovorans GPo1. Enzyme Microb Technol 16:904–911Google Scholar
  139. Vaneechoutte M, Young DM, Ornston LN, De Baere T, Nemec A, Van Der Reijden T, Carr E, Tjernberg I, Dijkshoorn L (2006) Naturally transformable Acinetobacter sp. strain ADP1 belongs to the newly described species Acinetobacter baylyi. Appl Environ Microbiol 72:932–936Google Scholar
  140. von der Weid I, Marques JM, Cunha CD, Lippi RK, Dos Santos SC, Rosado AS, Lins U, Seldin L (2006) Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil. Syst Appl Microbiol 30:331–339CrossRefGoogle Scholar
  141. Wang L, Tang Y, Wang S, Liu RL, Liu MZ, Zhang Y, Liang FL, Feng L (2006) Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10:347–356Google Scholar
  142. Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584Google Scholar
  143. Wilkes H, Kuhner S, Bolm C, Fischer T, Classen A, Widdel F, Rabus R (2003) Formation of n-alkane- and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil. Org Geochem 34:1313–1323Google Scholar
  144. Wilkes H, Rabus R, Fischer T, Armstroff A, Behrends A, Widdel F (2002) Anaerobic degradation of n-hexane in a denitrifying bacterium: Further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement. Arch Microbiol 177:235–243Google Scholar
  145. Witholt B, de Smet MJ, Kingma J, van Beilen JB, Kok M, Lageveen RG, Eggink G (1990) Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol 8:46–52Google Scholar
  146. Wongsa P, Tanaka M, Ueno A, Hasanuzzaman M, Yumoto I, Okuyama H (2004) Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil. Curr Microbiol 49:415–422Google Scholar
  147. Wubbolts MG, Favre-Bulle O, Witholt B (1996) Biosynthesis of synthons in two-liquid-phase media. Biotechnol Bioeng 52:301–308Google Scholar
  148. Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham WR, Luensdorf H, Timmis KN, Golyshin PN (2004) Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 54:141–148Google Scholar
  149. Yan PL (2006) Alkane-degrading functional bacteria, its cultivation method and application. CN1789408, 2006–06–21, CN20041081505 20041217, CHENGDU BIOLOGY RES INST OF TH (CN)Google Scholar
  150. Yumoto I, Nakamura A, Iwata H, Kojima K, Kusumoto K, Nodasaka Y, Matsuyama H (2002) Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90Google Scholar
  151. Yuste L, Canosa I, Rojo F (1998) Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway. J Bacteriol 180:5218–5226Google Scholar
  152. Yuste L, Corbella ME, Turiegano MJ, Karlson U, Puyet A, Rojo F (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol 32:69–75Google Scholar
  153. Zarilla KA, Perry JJ (1984) Thermoleophilum album gen. nov. and sp. nov., a bacterium obligate for thermophily and n-alkane substrates. Arch Microbiol 137:286–290Google Scholar
  154. Zarilla K, Perry JJ (1987) Bacillus thermoleovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore forming bacteria. Syst Appl Microbiol 9:258–264Google Scholar
  155. Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269Google Scholar
  156. Zhang H, Kallimanis A, Koukkou AI, Drainas C (2004) Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl Microbiol Biotechnol 65:124–131Google Scholar
  157. Zhuang WQ, Tay JH, Maszenan AM, Krumholz LR, Tay ST (2003) Importance of gram-positive naphthalene-degrading bacteria in oil–contaminated tropical marine sediments. Lett Appl Microbiol 36:251–257Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Alexander Wentzel
    • 1
    • 2
    Email author
  • Trond E. Ellingsen
    • 2
  • Hans-Kristian Kotlar
    • 3
  • Sergey B. Zotchev
    • 1
  • Mimmi Throne-Holst
    • 2
  1. 1.Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of BiotechnologySINTEF Materials and ChemistryTrondheimNorway
  3. 3.Statoil ASA, R&DTrondheimNorway

Personalised recommendations