Applied Microbiology and Biotechnology

, Volume 76, Issue 5, pp 977–984 | Cite as

Understanding nonaflatoxigenicity of Aspergillus sojae: a windfall of aflatoxin biosynthesis research

  • Perng-Kuang Chang
  • Kenichiro Matsushima
  • Tadashi Takahashi
  • Jiujiang Yu
  • Keietsu Abe
  • Deepak Bhatnagar
  • Gwo-Fang Yuan
  • Yasuji Koyama
  • Thomas E. Cleveland


Aspergillus section Flavi includes aflatoxin-producing and nonproducing fungi. Aspergillus sojae is unable to produce aflatoxins and is generally recognized as safe for food fermentation. However, because of its taxonomical relatedness to aflatoxin-producing Aspergillus parasiticus and A. flavus, it is necessary to decipher the underlying mechanisms for its inability to produce aflatoxins. This review addresses the relationship between A. sojae and A. parasiticus and the advances that have been made in aflatoxin biosynthesis research, especially with regard to gene structure, genome organization, and gene regulation in A. parasiticus and A. flavus and how this has been used to assure the safety of A. sojae as an organism for food fermentation. The lack of aflatoxin-producing ability of A. sojae results primarily from an early termination point mutation in the pathway-specific aflR regulatory gene, which causes the truncation of the transcriptional activation domain of AflR and the abolishment of interaction between AflR and the AflJ co-activator. Both are required for gene expression. In addition, a defect in the polyketide synthase gene also contributes to its nonaflatoxigenicity.


Aflatoxin Acyl Carrier Protein Aflatoxin Production Aflatoxin Biosynthesis Starter Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barros G, Chiotta ML, Torres A, Chulze S (2006) Genetic diversity in Aspergillus parasiticus population from the peanut agroecosystem in Argentina. Lett Appl Microbiol 42:560–566Google Scholar
  2. Blumenthal CZ (2004) Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regul Toxicol Pharmacol 39:214–228CrossRefGoogle Scholar
  3. Bok JW, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Keller NP (2005) LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell 4:1574–1582CrossRefGoogle Scholar
  4. Brown MP, Brown-Jenco CS, Payne GA (1999) Genetic and molecular analysis of aflatoxin biosynthesis. Fungal Genet Biol 26:81–98CrossRefGoogle Scholar
  5. Calvo AM, Bok J, Brooks W, Keller NP (2004) veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl Environ Microbiol 70:4733–4739CrossRefGoogle Scholar
  6. Cary JW, Ehrlich KC, Wright M, Chang P-K, Bhatnagar D (2000) Generation of aflR disruption mutants of Aspergillus parasiticus. Appl Microbiol Biotechnol 53:680–684CrossRefGoogle Scholar
  7. Cary JW, Klich MA, Beltz SB (2005) Characterization of aflatoxin-producing fungi outside of Aspergillus section Flavi. Mycologia 97:425–432CrossRefGoogle Scholar
  8. Cary JW, Ehrlich KC, Bland JM, Montalbano BG (2006) The aflatoxin biosynthesis cluster gene, aflX, encodes an oxidoreductase involved in conversion of versicolorin A to demethylsterigmatocystin. Appl Environ Microbiol 72:1096–1101CrossRefGoogle Scholar
  9. Chang P-K (2003) The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR. Mol Genet Genom 268:711–719Google Scholar
  10. Chang P-K (2004) Lack of interaction between AFLR and AFLJ contributes to nonaflatoxigenicity of Aspergillus sojae. J Biotechnol 107:245–253CrossRefGoogle Scholar
  11. Chang P-K, Cary JW, Bhatnagar D, Cleveland TE, Bennett JW, Linz JE, Woloshuk CP, Payne GA (1993) Cloning of the Aspergillus parasiticus apa-2 gene associated with the regulation of aflatoxin biosynthesis. Appl Environ Microbiol 59:3273–3279Google Scholar
  12. Chang P-K, Bhatnagar D, Cleveland TE, Bennett JW (1995a) Sequence variability in homologs of the aflatoxin pathway gene aflR distinguishes species in Aspergillus section Flavi. Appl Environ Microbiol 61:40–43Google Scholar
  13. Chang P-K, Ehrlich KC, Yu J, Bhatnagar D, Cleveland TE (1995b) Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl Environ Microbiol 61:2372–2377Google Scholar
  14. Chang P-K, Yu J, Bhatnagar D, Cleveland TE (1999) The carboxy-terminal portion of the aflatoxin pathway regulatory protein AFLR of Aspergillus parasiticus activates GAL1::lacZ gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol 65:2508–2512Google Scholar
  15. Chang P-K, Bennett JW, Cotty PJ (2002) Association of aflatoxin biosynthesis and sclerotial development in Aspergillus parasiticus. Mycopathologia 153:41–48CrossRefGoogle Scholar
  16. Chang P-K, Yu J, Yu JH (2004) aflT, a MFS transporter-encoding gene located in the aflatoxin gene cluster, does not have a significant role in aflatoxin secretion. Fungal Genet Biol 41:911–920CrossRefGoogle Scholar
  17. Chang P-K, Horn BW, Dorner JW (2005) Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet Biol 42:914–923CrossRefGoogle Scholar
  18. Chang P-K, Ehrlich KC, Hua SS (2006) Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. Int J Food Microbiol 108:172–177CrossRefGoogle Scholar
  19. Crawford JM, Dancy BC, Hill EA, Udwary DW, Townsend CA (2006) Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase. Proc Natl Acad Sci U S A 103:16728–16733CrossRefGoogle Scholar
  20. Ehrlich KC, Montalbano BG, Cary JW (1999) Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in Aspergillus parasiticus. Gene 230:249–257CrossRefGoogle Scholar
  21. Ehrlich KC, Chang P-K, Yu J, Cotty PJ (2004) Aflatoxin biosynthesis cluster gene cypA is required for G aflatoxin formation. Appl Environ Microbiol 70:6518–6524CrossRefGoogle Scholar
  22. Ehrlich KC, Montalbano B, Boue SM, Bhatnagar D (2005a) An aflatoxin biosynthesis cluster gene encodes a novel oxidase required for conversion of versicolorin A to sterigmatocystin. Appl Environ Microbiol 71:8963–8965CrossRefGoogle Scholar
  23. Ehrlich KC, Yu J, Cotty PJ (2005b) Aflatoxin biosynthesis gene clusters and flanking regions. J Appl Microbiol 99:518–527CrossRefGoogle Scholar
  24. Flaherty JE, Payne GA (1997) Overexpression of aflR leads to upregulation of pathway gene transcription and increased aflatoxin production in Aspergillus flavus. Appl Environ Microbiol 63:3995–4000Google Scholar
  25. Frisvad JC, Skouboe P, Samson RA (2005) Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov. Syst Appl Microbiol 28:442–453CrossRefGoogle Scholar
  26. Geiser DM, Pitt JI, Taylor JW (1998) Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc Natl Acad Sci U S A 95:388–393CrossRefGoogle Scholar
  27. Geiser DM, Dorner JW, Horn BW, Taylor JW (2000) The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Fungal Genet Biol 31:169–179CrossRefGoogle Scholar
  28. Goto T, Wicklow DT, Ito Y (1996) Aflatoxin and cyclopiazonic acid production by a sclerotium-producing Aspergillus tamarii strain. Appl Environ Microbiol 62:4036–4038Google Scholar
  29. Hicks JK, Yu JH, Keller NP, Adams TH (1997) Aspergillus sporulation and mycotoxin production both require inactivation of the FadA Gα protein-dependent signaling pathway. EMBO J 16:4916–4923CrossRefGoogle Scholar
  30. Horn BW, Greene RL, Sobolev VS, Dorner JW, Powell JH (1996) Association of morphology and mycotoxin production with vegetative compatibility groups in Aspergillus flavus, A. parasiticus, and A. tamarii. Mycologia 88:574–587CrossRefGoogle Scholar
  31. Ito Y, Peterson SW, Wicklow DT, Goto T (2001) Aspergillus pseudotamarii, a new aflatoxin producing species in Aspergillus section Flavi. Mycol Res 105:233–239CrossRefGoogle Scholar
  32. Klich MA (2002) Identification of common Aspergillus species. Centraalbureau voor Schimmelcultures, The NetherlandsGoogle Scholar
  33. Klich MA, Mullaney EJ (1987) DNA restriction enzyme fragment polymorphism as a tool for rapid differentiation of Aspergillus flavus from Aspergillus oryzae. Exp Mycol 1:170–175CrossRefGoogle Scholar
  34. Klich MA, Mullaney EJ (1989) Use of bleomycin-containing medium to distinguish Aspergillus parasiticus from A. sojae. Mycologia 81:159–160CrossRefGoogle Scholar
  35. Klich MA, Pitt JI (1988) A laboratory guide to common Aspergillus species and their teleomorphs. CSIRO Division of Food Processing, North Ryde, NSWGoogle Scholar
  36. Klich MA, Yu J, Chang P-K, Mullaney EJ, Bhatnagar D, Cleveland TE (1995) Hybridization of genes involved in aflatoxin biosynthesis to DNA of aflatoxigenic and non-aflatoxigenic aspergilli. Appl Microbiol Biotechnol 44:439–443CrossRefGoogle Scholar
  37. Klich MA, Montalbano B, Ehrlich KE (1997) Northern analysis of aflatoxin biosynthesis genes in Aspergillus parasiticus and Aspergillus sojae. Appl Microbiol Biotechnol 47:246–249CrossRefGoogle Scholar
  38. Kumeda Y, Asao T (1996) Single-strand conformation polymorphism analysis of PCR-amplified ribosomal DNA internal transcribed spacers to differentiate species of Aspergillus section Flavi. Appl Environ Microbiol 62:2947–2952Google Scholar
  39. Kumeda Y, Asao T (2001) Heteroduplex panel analysis, a novel method for genetic identification of Aspergillus section Flavi strains. Appl Environ Microbiol 67:4084–4090CrossRefGoogle Scholar
  40. Kurtzman CP, Smiley MJ, Robert CJ, Wicklow DT (1986) DNA relatedness among wild and domesticated species in the Aspergillus flavus group. Mycologia 78:955–959CrossRefGoogle Scholar
  41. Lee CZ, Liou GY, Yuan GF (2006a) Comparison of the aflR gene sequences of strains in Aspergillus section Flavi. Microbiology 152:161–170CrossRefGoogle Scholar
  42. Lee YH, Tominaga M, Hayashi R, Sakamoto K, Yamada O, Akita O (2006b) Aspergillus oryzae strains with a large deletion of the aflatoxin biosynthetic homologous gene cluster differentiated by chromosomal breakage. Appl Microbiol Biotechnol 72:339–345CrossRefGoogle Scholar
  43. Matsushima K, Chang P-K, Yu J, Abe K, Bhatnagar D, Cleveland TE (2001a) Pre-termination in aflR of Aspergillus sojae inhibits aflatoxin biosynthesis. Appl Microbiol Biotechnol 55:585–589CrossRefGoogle Scholar
  44. Matsushima K, Yashiro K, Hanya Y, Abe K, Yabe K, Hamasaki T (2001b) Absence of aflatoxin biosynthesis in koji mold (Aspergillus sojae). Appl Microbiol Biotechnol 55:771–776CrossRefGoogle Scholar
  45. Meyers DM, O’Brian G, Du WL, Bhatnagar D, Payne GA (1998) Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Appl Environ Microbiol 64:3713–3717Google Scholar
  46. Minto RE, Townsend CA (1997) Enzymology and molecular biology of aflatoxin biosynthesis. Chem Rev 97:537–2555CrossRefGoogle Scholar
  47. Montiel D, Dickinson MJ, Lee HA, Dyer PS, Jeenes DJ, Roberts IN, James S, Fuller LJ, Matsuchima K, Archer DB (2003) Genetic differentiation of the Aspergillus section Flavi complex using AFLP fingerprints. Mycol Res 107:1427–1434CrossRefGoogle Scholar
  48. Moody SF, Tyler BM (1990a) Restriction enzyme analysis of mitochondrial DNA of the Aspergillus flavus group: A. flavus, A. parasiticus, and A. nomius. Appl Environ Microbiol 56:2441–2452Google Scholar
  49. Moody SF, Tyler BM (1990b) Use of nuclear DNA restriction fragment length polymorphisms to analyze the diversity of the Aspergillus flavus group: A. flavus, A. parasiticus, and A. nomius. Appl Environ Microbiol 56:2453–2461Google Scholar
  50. Otsuki T, Wilson JS, Sewadeh M (2001) What price precaution? European harmonization of aflatoxin regulations and African groundnuts exports. Euro Rev Agri Econom 28:263–284CrossRefGoogle Scholar
  51. Pariza MW, Johnson EA (2001) Evaluating the safety of microbial enzyme preparations used in food processing: update for a new century. Regul Toxicol Pharmacol 33:173–186CrossRefGoogle Scholar
  52. Payne GA, Nystrom GJ, Bhatnagar D, Cleveland TE, Woloshuk CP (1993) Cloning of the afl-2 gene involved in aflatoxin biosynthesis from Aspergillus flavus. Appl Environ Microbiol 59:156–162Google Scholar
  53. Payne GA, Nierman WC, Wortman JR, Pritchard BL, Brown D, Dean RA, Bhatnagar D, Cleveland TE, Machida M, Yu J (2006) Whole genome comparison of Aspergillus flavus and A. oryzae. Med Mycol 44(Suppl):9–11CrossRefGoogle Scholar
  54. Price MS, Yu J, Nierman WC, Kim HS, Pritchard B, Jacobus CA, Bhatnagar D, Cleveland TE, Payne GA (2006) The aflatoxin pathway regulator AflR induces gene transcription inside and outside of the aflatoxin biosynthetic cluster. FEMS Microbiol Lett 255:275–279CrossRefGoogle Scholar
  55. Roze LV, Beaudry RM, Keller NP, Linz JE (2004) Regulation of aflatoxin synthesis by FadA/cAMP/protein kinase A signaling in Aspergillus parasiticus. Mycopathologia 158:219–232CrossRefGoogle Scholar
  56. Sakuno E, Wen Y, Hatabayashi H, Arai H, Aoki C, Yabe K, Nakajima H (2005) Aspergillus parasiticus cyclase catalyzes two dehydration steps in aflatoxin biosynthesis. Appl Environ Microbiol 71:2999–3006CrossRefGoogle Scholar
  57. Schaffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005CrossRefGoogle Scholar
  58. Schechtman MG (1992) United States government regulations affecting aspergilli and their products. Biotechnology 23:271–296CrossRefGoogle Scholar
  59. Sekine H, Nasuno S, Iguchi N (1969) Isolation of highly proteolytic mutants from Aspergillus sojae. Agri Biol Chem 33:1477–1482Google Scholar
  60. Skory CD, Chang P-K, Linz JE (1993) Regulated expression of the nor-1 and ver-1 genes associated with aflatoxin biosynthesis. Appl Environ Microbiol 59:1642–1646Google Scholar
  61. Takahashi T, Chang P-K, Matsushima K, Yu J, Abe K, Bhatnagar D, Cleveland TE, Koyama Y (2002) Nonfunctionality of Aspergillus sojae aflR in a strain of Aspergillus parasiticus with a disrupted aflR gene. Appl Environ Microbiol 68:3737–3743CrossRefGoogle Scholar
  62. Tominaga M, Lee YH, Hayashi R, Suzuki Y, Yamada O, Sakamoto K, Gotoh K, Akita O (2006) Molecular analysis of an inactive aflatoxin biosynthesis gene cluster in Aspergillus oryzae RIB strains. Appl Environ Microbiol 72:484–490CrossRefGoogle Scholar
  63. Trail F, Chang P-K, Cary J, Linz JE (1994) Structural and functional analysis of the nor-1 gene involved in the biosynthesis of aflatoxins by Aspergillus parasiticus. Appl Environ Microbiol 60:4078–4085Google Scholar
  64. Trail F, Mahanti N, Linz J (1995) Molecular biology of aflatoxin biosynthesis. Microbiology 141:755–765CrossRefGoogle Scholar
  65. Vaamonde G, Patriarca A, Fernandez Pinto V, Comerio R, Degrossi C (2003) Variability of aflatoxin and cyclopiazonic acid production by Aspergillus section Flavi from different substrates in Argentina. Int J Food Microbiol 88:79–84CrossRefGoogle Scholar
  66. van Dijck PW, Selten GC, Hempenius RA (2003) On the safety of a new generation of DSM Aspergillus niger enzyme production strains. Regul Toxicol Pharmacol 38:27–35CrossRefGoogle Scholar
  67. Wang L, Yokoyama K, Takahasi H, Kase N, Hanya Y, Yashiro K, Miyaji M, Nishimura K (2001) Identification of species in Aspergillus section Flavi based on sequencing of the mitochondrial cytochrome b gene. Int J Food Microbiol 71:75–86CrossRefGoogle Scholar
  68. Watson AJ, Fuller LJ, Jeenes DJ, Archer DB (1999) Homologs of aflatoxin biosynthesis genes and sequence of aflR in Aspergillus oryzae and Aspergillus sojae. Appl Environ Microbiol 65:307–310Google Scholar
  69. Wei DL, Jong SC (1986) Production of aflatoxins by strains of the Aspergillus flavus group maintained in ATCC. Mycopathologia 93:19–24CrossRefGoogle Scholar
  70. Wen Y, Hatabayashi H, Arai H, Kitamoto HK, Yabe K (2005) Function of the cypX and moxY genes in aflatoxin biosynthesis in Aspergillus parasiticus. Appl Environ Microbiol 71:3192–3198CrossRefGoogle Scholar
  71. Wicklow DT (1984) Conidium germination rate in wild and domesticated yellow-green Aspergilli. Appl Environ Microbiol 47:299–300Google Scholar
  72. Wilkinson JR, Yu J, Bland JM, Nierman WC, Bhatnagar D, Cleveland TE (2007) Amino acid supplementation reveals differential regulation of aflatoxin biosynthesis in Aspergillus flavus NRRL 3357 and Aspergillus parasiticus SRRC 143. Appl Microbiol Biotechnol 74:1308–1319CrossRefGoogle Scholar
  73. Yabe K, Nakajima H (2004) Enzyme reactions and genes in aflatoxin biosynthesis. Appl Microbiol Biotechnol 64:745–755CrossRefGoogle Scholar
  74. Yu J, Chang P-K, Cary JW, Wright M, Bhatnagar D, Cleveland TE, Payne GA, Linz JE (1995) Comparative mapping of aflatoxin pathway gene clusters in Aspergillus parasiticus and Aspergillus flavus. Appl Environ Microbiol 61:2365–2371Google Scholar
  75. Yu J, Woloshuk CP, Bhatnagar D, Cleveland TE (2000) Cloning and characterization of avfA and omtB genes involved in aflatoxin biosynthesis in three Aspergillus species. Gene 248:157–167CrossRefGoogle Scholar
  76. Yu J, Chang P-K, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW (2004a) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70:1253–1262CrossRefGoogle Scholar
  77. Yu J, Whitelaw CA, Nierman WC, Bhatnagar D, Cleveland TE (2004b) Aspergillus flavus expressed sequence tags for identification of genes with putative roles in aflatoxin contamination of crops. FEMS Microbiol Lett 237:333–340Google Scholar
  78. Yuan GF, Liu CS, Chen CC (1995) Differentiation of Aspergillus parasiticus from Aspergillus sojae by random amplification of polymorphic DNA. Appl Environ Microbiol 61:2384–2387Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Perng-Kuang Chang
    • 1
  • Kenichiro Matsushima
    • 2
  • Tadashi Takahashi
    • 2
  • Jiujiang Yu
    • 1
  • Keietsu Abe
    • 3
  • Deepak Bhatnagar
    • 1
  • Gwo-Fang Yuan
    • 4
  • Yasuji Koyama
    • 2
  • Thomas E. Cleveland
    • 1
  1. 1.Food and Feed Safety Research Unit, Southern Regional Research Center, Agricultural Research Service, US Department of AgricultureNew OrleansUSA
  2. 2.Noda Institute for Scientific ResearchNoda City, ChibaJapan
  3. 3.Graduate School of Agricultural SciencesTohoku UniversitySendaiJapan
  4. 4.Bioresource Collection and Research CenterFood Industry Research and Development InstituteHsinchuRepublic of China

Personalised recommendations