Applied Microbiology and Biotechnology

, Volume 76, Issue 6, pp 1297–1307 | Cite as

Cloning, sequencing, overexpression and characterization of l-rhamnose isomerase from Bacillus pallidus Y25 for rare sugar production

  • Wayoon Poonperm
  • Goro TakataEmail author
  • Hiromi Okada
  • Kenji Morimoto
  • Tom Birger Granström
  • Ken Izumori
Biotechnologically Relevant Enzymes and Proteins


The l-rhamnose isomerase gene (L -rhi) encoding for l-rhamnose isomerase (l-RhI) from Bacillus pallidus Y25, a facultative thermophilic bacterium, was cloned and overexpressed in Escherichia coli with a cooperation of the 6×His sequence at a C-terminal of the protein. The open reading frame of L -rhi consisted of 1,236 nucleotides encoding 412 amino acid residues with a calculated molecular mass of 47,636 Da, showing a good agreement with the native enzyme. Mass-produced l-RhI was achieved in a large quantity (470 mg/l broth) as a soluble protein. The recombinant enzyme was purified to homogeneity by a single step purification using a Ni-NTA affinity column chromatography. The purified recombinant l-RhI exhibited maximum activity at 65°C (pH 7.0) under assay conditions, while 90% of the initial enzyme activity could be retained after incubation at 60°C for 60 min. The apparent affinity (K m) and catalytic efficiency (k cat/K m) for l-rhamnose (at 65°C) were 4.89 mM and 8.36 × 105 M−1 min−1, respectively. The enzyme demonstrated relatively low levels of amino acid sequence similarity (42 and 12%), higher thermostability, and different substrate specificity to those of E. coli and Pseudomonas stutzeri, respectively. The enzyme has a good catalyzing activity at 50°C, for d-allose, l-mannose, d-ribulose, and l-talose from d-psicose, l-fructose, d-ribose and l-tagatose with a conversion yield of 35, 25, 16 and 10%, respectively, without a contamination of by-products. These findings indicated that the recombinant l-RhI from B. pallidus is appropriate for use as a new source of rare sugar producing enzyme on a mass scale production.


l-Rhamnose isomerase Bacillus pallidus Rare sugar 


  1. Altschul F, Gish W, Miller W, Meyers EW, Lipman Stephen DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410Google Scholar
  2. Badia J, Baldoma L, Aguilar J, Boronat A (1989) Identification of the rhaA, rhaB and rhaD gene products from Escherichia coli K-12. FEMS Microbiol Lett 65:253–258CrossRefGoogle Scholar
  3. Badia J, Gimenez R, Baldoma L, Barnes E, Fessner WD, Aguilar J (1991) l-Lyxose metabolism employs the l-rhamnose pathway in mutant cells of Escherichia coli adapted to grow on l-lyxose. J Bacteriol 173:5144–5150Google Scholar
  4. Bertelsen H, Jensen BB, Buemann B (1999) d-tagatose—a novel low-calorie bulk sweetener with prebiotic properties. World Rev Nutr Diet 85:98–109CrossRefGoogle Scholar
  5. Bhuiyan SH, Itami Y, Izumori K (1997) Isolation of an l-rhamnose isomerase-constitutive mutant of Pseudomonas sp. strain LL172: purification and characterization of the enzyme. J Ferment Bioeng 84:319–323CrossRefGoogle Scholar
  6. Bhuiyan SH, Itami Y, Takada G, Izumori K (1999) Preparation of l-talose and d-gulose from l-tagatose and d-sorbose, respectively, using immobilized l-rhamnose isomerase. J Biosci Bioeng 88:567–570CrossRefGoogle Scholar
  7. Bradford MM (1979) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  8. Bustard MT, Wright PC (2002) Biodegradation of high concentration isopropanol by a solvent tolerant thermophile, Bacillus pallidus. Extremophiles 6:319–323CrossRefGoogle Scholar
  9. Cramp R, Gilmour M, Cowan DA (1997) Novel thermophilic bacteria producing nitrile-degrading enzymes. Microbiology 143:2313–2320Google Scholar
  10. Dishe Z, Borenfreud E (1951) A new spectrophotometric method for the detection of keto sugars and trioses. J Biol Chem 192:583–587Google Scholar
  11. Domagk GF, Zech R (1963) _ber den Abbau der Desoxyzucker durch Bacterienenzyme. I. l-Rhamnose-isomerase aus Lactobacillus plantarum. Biochem Z 339:145–153Google Scholar
  12. Garcia-Junceda E, Shen GJ, Alajarin R, Wong CH (1995) Cloning and overexpression of rhamnose isomerase and fucose isomerase. Bioorg Med Chem 3:1349–1355CrossRefGoogle Scholar
  13. Granström TB, Takata G, Tokuda M, Izumori K (2004) Izumoring, A novel and complete strategy for bioproduction of rare sugars. J Biosci Bioeng 97:89–94Google Scholar
  14. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmid. J Mol Biol 166:557–590CrossRefGoogle Scholar
  15. Illanes A (1999) Stability of biocatalysts process biotechnology. Electronic J Biotechnol 2:0717–3458Google Scholar
  16. Itoh H, Okaya H, Khan AR, Tajima S, Hayakawa S, Izumori K (1994) Purification and characterization of d-tagatose 3-epimerase from Pseudomonas sp. ST-24. Biosci Biotechnol Biochem 58:2168–2171CrossRefGoogle Scholar
  17. Itoh H, Sato T, Izumori K (1995) Preparation of d-psicose from d-fructose by immobilized d-tagatose 3-epimerase. J Ferment Bioeng 80:101–103CrossRefGoogle Scholar
  18. Izumori K, Mitchell M, Elbein AD (1976) Evidence that the isomerization of d-ribose and l-rhamnose is catalyzed by the same enzyme in Mycobacterium smegmatis. J Bacteriol 126:553–555Google Scholar
  19. Jeong LS, Yoo SJ (1998) Synthesis and antiviral activity of novel isodideoxy nucleosides with exocyclic methylene. Bioorg Med Chem Lett 8:847–852CrossRefGoogle Scholar
  20. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefGoogle Scholar
  21. Kim HJ, Oh DK (2005) Purification and characterization of an l-arabinose isomerase from an isolated strain of Geobacillus thermodenitrificans producing d-tagatose. J Biotechnol 120:162–173CrossRefGoogle Scholar
  22. Kornderfer IP, Fessner WD, Matthews BW (2000) The structure of rhamnose isomerase from Escherichia coli and its relation with xylose isomerase illustrates a change between inter and intra-subunit complementation during evolution. J Mol Biol 300:917–933CrossRefGoogle Scholar
  23. Kuroda K, Hanajima D, Fukumoto Y, Suzuki K, Kawamoto S, Shima J, Haga K (2004) Isolation of thermophilic ammonium-tolerant bacterium and its application to reduce ammonia emission during composting of animal wastes. Biosci Biotechnol Biochem 68:286–292CrossRefGoogle Scholar
  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  25. Leang K, Takada G, Ishimura A, Okita M, Izumori K (2004a) Cloning, nucleotide sequence, and overexpression of the l-rhamnose isomerase gene from Pseudomonas stutzeri in Escherichia coli. Appl Environ Microbiol 70:3298–3304CrossRefGoogle Scholar
  26. Leang K, Takada G, Fukai Y, Morimoto K, Granstrom TB, Izumori K (2004b) Novel reactions of l-rhamnose isomerase from Pseudomonas stutzeri and its relation with d-xylose isomerase via substrate specificity. Biochim Biophys Acta 1674:68–77Google Scholar
  27. Lerner LM, Mennitt G (1994) A new synthesis of l-talose and preparation of its adenine nucleosides. Carbohydr Res 259:191–200CrossRefGoogle Scholar
  28. Ly KA, Milgrom P, Rothen M (2006) Xylitol, sweeteners, and dental caries. Pediatr Dent 28:192–198Google Scholar
  29. Moralejo P, Egan SM, Hidalgo E, Aguilar J (1993) Sequencing and characterization of a gene cluster encoding the enzymes for l-rhamnose metabolism in Escherichia coli. J Bacteriol 175:5585–5594Google Scholar
  30. Menavuvu BT, Poonperm W, Leang K, Noguchi N, Okada H, Morimoto K, Granstrom TB, Takada G, Izumori K (2006) Efficient biosynthesis of d-allose from d-psicose by cross- linked recombinant l-rhamnose isomerase: separation of product by ethanol crystallization. J Biosci Bioeng 101:340–345CrossRefGoogle Scholar
  31. Mozhaev V (1993) Mechanism-based strategies for protein thermostabilization. Trend Biotechnol 11:88–95CrossRefGoogle Scholar
  32. Noltmann EA (1972) Aldose–ketose isomerases. In: Boyer PD (ed) The enzymes, 3rd edn, vol 6. Academic, London, pp 271–354Google Scholar
  33. Oudega B, Koningstein G Rodrigues L, de Sales Ramon M, Hilbert H, Dusterhoft TM, Pohl TM, Weitzenegger T (1997) Analysis of the Bacillus subtilis genome: cloning and nucleotide sequence of a 62 kb region between 275 degrees (rrnB) and 284 degrees (pai). Microbiology 143:2769–2774CrossRefGoogle Scholar
  34. Poonperm W, Takata G, Morimoto K, Granström TB, Izumori K (2007a) Production of l-xylulose from xylitol by a newly isolated strain of Bacillus pallidus Y25 and characterization of its relevant enzyme xylitol dehydrogenase. Enzyme Microb Technol 40:1206–1212CrossRefGoogle Scholar
  35. Poonperm W, Takata G, Sahachaisaree V, Lumyong P, Lumyong S, Izumori K (2007b) Efficient conversion of allitol to d-psicose by Bacillus pallidus Y25. J Biosci Bioeng 103:282–285CrossRefGoogle Scholar
  36. Sui L, Dong Y, Watanabe Y, Yamaguchi F, Hatano N, Tsukamoto I, Izumori K, Tokuda M (2005) The inhibitory effect and possible mechanisms of d-allose on cancer cell proliferation. Int J Oncol 27:907–912Google Scholar
  37. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  38. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467CrossRefGoogle Scholar
  39. Takami H, Takaki Y, Uchiyama I (2002) Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res 30:3927–3935CrossRefGoogle Scholar
  40. Takeshita K, Shimonishi T, Izumori K (1996) Production of l-psicose from allitol by Gluconobacter frateurii IFO 3254. J Ferment Bioeng 3:212–215CrossRefGoogle Scholar
  41. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  42. Wasserman B (1984) Thermostable enzyme production. Food Technol 38:78–88Google Scholar
  43. Yoshida H, Yamada M, Ohyama O, Takada G, Izumori K, Kamitori S (2007) The structures of l-rhamnose isomerase from Pseudomonas stutzeri in complexes with l-rhamnose and d-allose provide insights into broad substrate specificity. J Mol Biol 365:1505–1516CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Wayoon Poonperm
    • 1
  • Goro Takata
    • 1
    Email author
  • Hiromi Okada
    • 1
  • Kenji Morimoto
    • 1
  • Tom Birger Granström
    • 1
  • Ken Izumori
    • 1
  1. 1.Rare Sugar Research Center and Faculty of AgricultureKagawa UniversityMikiJapan

Personalised recommendations