Applied Microbiology and Biotechnology

, Volume 76, Issue 3, pp 719–726 | Cite as

Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions

  • Meiying Xu
  • Jun Guo
  • Guoping Sun
Environmental Biotechnology


The complete biodegradation of azo dye, Fast Acid Red GR, was observed under microaerophilic conditions by Shewanella decolorationis S12. Although the highest decolorizing rate was measured under anaerobic condition and the highest biomass was obtained under aerobic condition, a further biodegradation of decolorizing products can only be achieved under microaerophilic conditions. Under microaerophilic conditions, S. decolorationis S12 could use a range of carbon sources for azo dye decolorization, including lactate, formate, glucose and sucrose, with lactate being the optimal carbon source. Sulfonated aromatic amines were not detected during the biotransformation of Fast Acid Red GR, while H2S formed. The decolorizing products, aniline, 1,4-diaminobenzene and 1-amino-2-naphthol, were followed by complete biodegradation through catechol and 4-aminobenzoic acid based on the analysis results of GC-MS and HPLC.


Azo dye biodegradation Microaerophilic conditions Shewanella decolorationis S12 



This research was supported by the Chinese National Natural Science Foundation (3050009), Guangdong Provincial Key Programs for Science and Technology Development (05100365), Guangdong Provincial Natural Science Foundation (No.015017), Guangdong Provincial Programs for Science and Technology Development (2006B36703001) and Guangzhou Programs for Science and Technology Development (2006Z3-E0461).


  1. Blümel S, Busse HJ, Stolz A, Kämpfer P (2001) Xenophilus azovorans gen. nov. sp. nov., a soil bacterium able to degrade azo dyes of the Orange II type. Int J Syst Evol Microbiol 51:1831–1837Google Scholar
  2. Blümel S, Contzen M, Lutz M, Stolz A, Knackmuss H-J (1998) Isolation of a bacterial strain with the ability to utilize the sulfonated azo compound 4-carboxy-4′-sulfoazobenzene as the sole source of carbon and energy. Appl Environ Microbiol 64:2315–2317Google Scholar
  3. Brown MA, DeVito SC (1993) Predicting azo dye toxicity. Crit Rev Environ Sci Technol 23:249–324CrossRefGoogle Scholar
  4. Chung KT, Cerniglia CE (1992) Mutagenicity of azo dyes: structure activity relationships. Mutat Res 77:201–220Google Scholar
  5. Coughlin MF, Kinkle BK, Bishop PL (1999) Degradation of azo dyes containing aminonaphthol by Sphingomonas sp. strain 1CX. Ind Microbiol Biotechnol 23:341–346CrossRefGoogle Scholar
  6. Glässer A, Liebelt U, Hempel DC (1992) Design of a two-stage process for total degradation of azo dyes. DECHEMA Biotechnol Conf 5B:1085–1088Google Scholar
  7. Gralnick JA, Vali H, Lies DP, Newman DK (2006) Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc Natl Acad Sci USA 103:4669–4674CrossRefGoogle Scholar
  8. Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, Fraser CM (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat biotech 20:1118–1123CrossRefGoogle Scholar
  9. Hong Y, Chen X, Guo J, Xu Z, Xu M, Sun G (2007) Effects of electron donors and acceptors on anaerobic reduction of azo dyes by Shewanella decolorationis S12. Appl Microbiol Biotech 74:230–238CrossRefGoogle Scholar
  10. Hu TL (1994) Decolorization of reactive azo dye by transformation with Pseudomonas luteola. Biores Technol 49:47–51CrossRefGoogle Scholar
  11. Keck A, Klein J, Kudlich M, Stolz A, Knackmuss HJ, Mattes R (1997) Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6. Appl Environ Microbiol 63:3684–3690Google Scholar
  12. Kudlich M, Bishop P, Knackmuss H-J, Stolz A (1996) Synchronous anaerobic and aerobic degradation of the sulfonated azo dye Mordant Yellow 3 by immobilized cells from a naphthalenesulfonate-degrading mixed culture. Appl Microbiol Biotechnol 46:597–603CrossRefGoogle Scholar
  13. Kumar K, Devi SS, Krishnamurthi K, Gampawar S, Mishra N, Pandya GH, Chakrabarti T (2006) Decolorisation, biodegradation and detoxification of benzidine based azo dye. Bioresour Technol 97:407–413CrossRefGoogle Scholar
  14. Krooneman J, Wieringa EBA, Moore ERB, Gerritse J, Prins RA, Gottschal JC (1996) Isolation of Alcaligenes sp. strain L6 at low oxygen concentration and degradation of 3-chlorobenzoate via a pathway not involving (chloro) catechols. Appl Environ Microbiol 62:2427–2434Google Scholar
  15. Nealson KH, Scott J (2003) Ecophysiology of the genus Shewanella. In: Dworkin M (ed) The Prokaryotes, vol. 2004. Springer, New YorkGoogle Scholar
  16. Olsen RH, Kukor JJ, Kaphammer B (1994) A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1. J Bacteriol 176:3749–3756Google Scholar
  17. Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigm 58:179–196CrossRefGoogle Scholar
  18. Pearce CI, Christie R, Boothman C, von Canstein H, Guthrie JT, Lloyd JR (2006) Reactive azo dye reduction by Shewanella strain J18 143. Biotechnol Bioeng 95:692–703CrossRefGoogle Scholar
  19. Peres CM, Naveau H, Agathos SN (1998) Biodegradation of nitrobenzene by its simultaneous reduction into aniline and mineralization of the aniline formed. Appl Microbiol Biotechnol 49:343–349CrossRefGoogle Scholar
  20. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  21. Stolz A (1999) Degradation of substituted naphthalenesulfonic acids by Sphingomonas xenophaga BN6. J Ind Microbiol Biotechnol 23:391–399CrossRefGoogle Scholar
  22. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80CrossRefGoogle Scholar
  23. Tan NC, van Leeuwen A, van Voorthuizen EM, Slenders P, Prenafeta-Boldú FX, Temmink H, Lettinga G, Field JA (2005) Fate and biodegradability of sulfonated aromatic amines. Biodegradation 16:527–537CrossRefGoogle Scholar
  24. Tiedje JM (2002) Shewanella—the environmentally versatile genomes. Nat Biotech 20:1903–1904CrossRefGoogle Scholar
  25. Venkateswaran K, Moser DP, Dollhopf ME et al (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49:705–724CrossRefGoogle Scholar
  26. Viliesid F, Lilly MD (1992) Influence of dissolved oxygen tension on the synthesis of catechol 1, 2-dioxygenase by Pseudomonas putida. Enzyme Microb Technol 14:561–565CrossRefGoogle Scholar
  27. Xu M, Guo J, Cen Y, Zhong Xn, Cao W, Sun G (2005) Shewanella decolorationis sp. nov., decolorizing bacterium isolated from activated sludge of a waste-water treatment plant. Int J Syst Evol Microbiol 55:363–368CrossRefGoogle Scholar
  28. Xu M, Guo J, Zeng G, Zhong X, Sun G (2006) Decolorization of Anthraquinone Dye by Shewanella decolorationis S12. Appl Microbiol Biotech 71:246–251CrossRefGoogle Scholar
  29. Xu M, Guo J, Kong X, Chen X, Sun G (2007) Fe(III)—enhanced Azo Reduction by Shewanella decolorationis S12. Appl Microbiol Biotech 74:1342–1349CrossRefGoogle Scholar
  30. Yatome C, Matsufuru H, Taguchi T, Ogawa T (1993) Degradation of 4’-dimethylaminoazobenzene-2-carboxylic acid by Pseudomonas stutzeri. Appl Microbiol Biotechnol 39:778–781CrossRefGoogle Scholar
  31. Zhou N, Jenkins A, Chan Kwo Chion CKN, Leak DJ (1999) The alkene monooxygenase from Xanthobacter strain Py2 is closely related to aromatic monooxygenases and catalyzes aromatic monohydroxylation of benzene, toluene, and phenol. Appl Environ Microbiol 65:1589–1595Google Scholar
  32. Zissi U, Lyberatos G, Pavlou S (1997) Biodegradation of p-amino-azobenzene by Bacillus subtilis under aerobic conditions. J Ind Microbiol Biotechnol 19:49–55CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Guangdong Institute of MicrobiologyGuangzhouPeople’s Republic of China
  2. 2.Guangdong Provincial Key Lab of Microbial Culture Collection and ApplicationGuangzhouPeople’s Republic of China
  3. 3.Guangdong Institute of MicrobiologyGuangzhouPeople’s Republic of China

Personalised recommendations