Advertisement

Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part I: processes with isolated enzymes

  • Katja Goldberg
  • Kirsten Schroer
  • Stephan Lütz
  • Andreas Liese
Mini-Review

Abstract

Enzymes are able to perform reactions under mild conditions, e.g., pH and temperature, with remarkable chemo-, regio-, and stereoselectivity. Because of this feature, the number of biocatalysts used in organic synthesis has rapidly increased during the last decades, especially for the production of chiral compounds. The present review highlights biotechnological processes for the production of chiral alcohols by reducing prochiral ketones. These reactions can be catalyzed by either isolated enzymes or whole cells that exhibit ketone-reducing activity. The use of isolated enzymes is often preferred because of a higher volumetric productivity and the absence of side reactions. Both types of catalysts have also deficiencies limiting their use in synthesis of chiral alcohols. Because reductase-catalyzed reactions are dependent on cofactors, one major task in process development is to provide an effective method for regeneration of the consumed cofactors. In this paper, strategies for cofactor regeneration in biocatalytic ketone reduction are reviewed. Furthermore, different processes carried out on laboratory and industrial scales using isolated enzymes are presented. Attention is turned to process parameters, e.g., conversion, yield, enantiomeric excess, and process strategies, e.g., the application of biphasic systems or methods of in situ (co)product recovery. The biocatalytic production of chiral alcohols utilizing whole cells is presented in part II of this review (Goldberg et al., Appl Microbiol Biotechnol, 2007).

Keywords

Ketone reduction Cofactor regeneration Chiral alcohol 

References

  1. Abril O, Whitesides GM (1982) Hybrid organometallic/enzymatic catalyst systems: regeneration of NADH using dihydrogen. J Am Chem Soc 104:1552–1554Google Scholar
  2. Adam W, Lazarus M, Saha-Möller CR, Schreier P (1999) Biocatalytic synthesis of optically active α-oxyfunctionalized carbonyl compounds. Acc Chem Res 32:837–845Google Scholar
  3. Avi M, Fechter MH, Gruber K, Belaj F, Pöchlauer P, Griengl H (2004) Hydroxynitrile lyase catalyzed synthesis of heterocyclic (R)- and (S)-cyanohydrins. Tetrahedron 60:10411–10418Google Scholar
  4. Bhaduri S, Mathur P, Payra P, Sharma K (1998) Coupling of catalyses by carbonyl clusters and dehydrogenases: reduction of pyruvate to l-lactate by dihydrogen. J Am Chem Soc 120:12127–12128Google Scholar
  5. Biade AE, Bourdillon C, Lava JM, Mairesse G, Moiroux J (1992) Complete conversion of l-lactate into d-lactate. A generic approach involving enzymatic catalysis, electrochemical oxidation of NADH, and electrochemical reduction of pyruvate. J Am Chem Soc 114:893–897Google Scholar
  6. Blaser HU, Malan C, Pugin B, Spindler F, Steiner H, Studer M (2003) Selective hydrogenation for fine chemicals: recent trends and new developments. Adv Synth Catal 345:103–151Google Scholar
  7. Bommarius AS, Schwarm M, Stingl K, Kottenhahn M, Huthmacher K, Drauz K (1995) Synthesis and use of enantiomerically pure tert-leucine. Tetrahedron Asymmetry 6:2851–2888Google Scholar
  8. Bornscheuer U, Reif OW, Lausch R, Freitag R, Scheper T, Kolisis FN, Menge U (1994) Lipase of Pseudomonas cepacia for biotechnological purposes: purification, crystallization and characterization. Biochim Biophys Acta 1201:55–60Google Scholar
  9. Bortolini OMS (1997) An easy approach to the synthesis of optically active vic-diols: a new single-enzyme system. J Org Chem 62:1854–1856Google Scholar
  10. Breuer M, Ditrich K, Habicher T, Hauer B, Keßeler M, Stürmer R, Zelinski T (2004) Industrielle Verfahren zur Herstellung von optisch aktiven Zwischenprodukten. Angew Chem 116:806–843 (also in Angew Chem Int Ed 43:788–824)Google Scholar
  11. Buchholz S, Gröger H (2006) Enantioselective biocatalytic reduction of ketones for the synthesis of optically active alcohols. In: Patel RN (ed) Biocatalysis in the pharmaceutical and biotechnology industries. Taylor & Francis, New York, pp 757–790Google Scholar
  12. Buque-Taboada EM, Straathof AJJ, Heijnen JJ, van der Wielen LAM (2006) In situ product recovery (ISPR) by crystallization: basic principles, design, and potential applications in whole-cell biocatalysis. Appl Microbiol Biotechnol 71:1–12Google Scholar
  13. Choudary BM, Chowdari NS, Madhi S, Kantam ML (2001) A trifunctional catalyst for the synthesis of chiral diols. Angew Chem 113:4755–4759 (also in Angew Chem Int Ed 40:4655–4759)Google Scholar
  14. Costas AMG, White AK, Metcalf WW (2001) Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88. J Biol Chem 276:17429–17436Google Scholar
  15. Daußmann T, Hennemann HG, Rosen TC (2006a) Enzymatische technologien zur synthese chiraler alkohol-derivate. Chem Ing Tech 78:249–255Google Scholar
  16. Daußmann T, Dünkelmann P, Lütz S (2006b) Chiral alcohols. CHEManager (Europe) 3:8Google Scholar
  17. Daußmann T, Rosen TC, Dünkelmann P (2006c) Oxidoreductases and hydroxynitrilase lyases: complementary enzymatic technologies for chiral alcohols. Eng Life Sci 6:125–129Google Scholar
  18. Davis C, Grate J, Gray D, Gruber J, Huismann G, Ma S, Newman L, Sheldon R (2005) Enzymatic processes for the production of 4-substituted 3-hydroxybutyric acid derivatives. Codexis, Patent no. WO04015132Google Scholar
  19. Degenring D, Schröder I, Wandrey C, Liese A, Greiner L (2004) Resolution of 1,2-diols by enzyme-catalyzed oxidation with anodic, mediated cofactor regeneration in the extractive membrane reactor: gaining insight by adaptive simulation. Org Process Res Dev 8:213–218Google Scholar
  20. Demir AS, Şeşenoglu Ö, Eren E, Hosrik B, Pohl M, Janzen E, Kolter D, Feldmann R, Dünkelmann P, Müller M (2002) Enantioselective synthesis of α-hydroxy ketones via benzaldehyde lyase-catalyzed C–C bond formation reaction. Adv Synth Catal 344:96–103Google Scholar
  21. Detry J, Rosenbaum T, Lütz S, Hahn D, Jaeger KE, Müller M, Eggert T (2006) Biocatalytic production of enantiopure cyclohexane-trans-1,2-diol using extracellular lipases from Bacillus subtilis. Appl Microbiol Biotechnol 72:1107–1116Google Scholar
  22. Domínguez de María P, Stillger T, Pohl M, Wallert S, Drauz K, Groger H, Trauthwein H, Liese A (2006) Preparative enantioselective synthesis of benzoins and (R)-2-hydroxy-1-phenylpropanone using benzaldehyde lyase. J Mol Catal B Enzym 38:43–47CrossRefGoogle Scholar
  23. Eckstein M, Villela M, Liese A, Kragl U (2004) Use of an ionic liquid in a two-phase system to improve an alcohol dehydrogenase catalysed reduction. Chem Commun 9:1084–1085Google Scholar
  24. Elend C, Schmeisser C, Leggewie C, Babiak P, Carballeira JD, Steele HL, Reymond JL, Jaeger KE, Streit WR (2006) Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl Environ Microbiol 72:3637–3645Google Scholar
  25. Ernst M, Kaup B, Müller M, Bringer-Meyer S, Sahm H (2005) Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase. Appl Microbiol Biotechnol 66:629–634Google Scholar
  26. Faber K (2004) Biotransformations in organic chemistry (5th edn.). Springer, BerlinGoogle Scholar
  27. Fechter MH, Griengl H (2004) Hydroxynitrile lyases: biological sources and application as biocatalysts. Food Technol Biotechnol 42:287–294Google Scholar
  28. Ferloni C, Heinemann M, Hummel W, Daußmann T, Büchs J (2004) Optimization of enzymatic gas-phase reactions by increasing the long-term stability of the catalyst. Biotechnol Prog 20:975–978Google Scholar
  29. Findrik Z, Vasic-Racki D, Lütz S, Daußmann T, Wandrey C (2005) Kinetic modelling of acetophenone reduction catalyzed by alcohol dehydrogenase from Thermoanaerobacter sp. Biotechnol Lett 27:1087–1095Google Scholar
  30. Gaisberger RP, Fechter MH, Griengl H (2004) The first hydroxynitrile lyase catalysed cyanohydrin formation in ionic liquids. Tetrahedron Asymmetry 15:2959–2963Google Scholar
  31. Goldberg K, Edegger K, Kroutil W, Liese A (2006) Overcoming the thermodynamic limitation in asymmetric hydrogen transfer reactions catalyzed by whole cells. Biotechnol Bioeng 95:192–198Google Scholar
  32. Goldberg K, Schroer K, Lütz S, Liese A (2007) Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part II: whole cell reductions. Appl Microbiol Biotechnol (in this issue)Google Scholar
  33. Greiner L, Müller DH, van den Ban ECD, Wöltinger J, Wandrey C, Liese A (2003) Membrane aerated hydrogenation: enzymatic and chemical homogeneous catalysis. Adv Synth Catal 345:679–683Google Scholar
  34. Griengl H, Hickel A, Johnson DV, Kratky C, Schmidt M, Schwab H (1997) Enzymatic cleavage and formation of cyanohydrins: a reaction of biological and synthetic relevance. Chem Commun 1933–1940Google Scholar
  35. Haberland J, Hummel W, Daußmann T, Liese A (2002) New continuous production process for enantiopure (2R,5R)-hexanediol. Org Process Res Dev 6:458–462Google Scholar
  36. Hildebrand F, Lütz S (2006) Immobilisation of alcohol dehydrogenase from Lactobacillus brevis and its application in a plug-flow reactor. Tetrahedron Asymmetry 17:3219–3225Google Scholar
  37. Hildebrand F, Kühl S, Pohl M, Vasic-Racki D, Müller M, Wandrey C, Lütz S (2006) The production of (R)-2-hydroxy-1-phenyl-propan-1-one derivatives by benzaldehyde lyase from Pseudomonas fluorescens in a continuously operated membrane reactor. Biotechnol Bioeng 96(5):835–843Google Scholar
  38. Hilt G, Jarbawi T, Heineman WR, Steckhan E (1997) An analytical study of the redox behavior of 1,10-phenanthroline-5,6-dione, its transition-metal complexes, and its N-monomethylated derivative with regard to their efficiency as mediators of NAD(P)+ regeneration. Chem Eur 3:79–88Google Scholar
  39. Hollmann F, Schmid A (2004) Electrochemical regeneration of oxidoreductases for cell-free biocatalytic redox reactions. Biocatal Biotransform 22:63–88Google Scholar
  40. Hollmann F, Kleeb A, Otto K, Schmid A (2006) Corrigendum to “Coupled chemoenzymatic transfer hydrogenation catalysis for enantioselective reduction and oxidation reactions”. Tetrahedron Asymmetry 17:867–868Google Scholar
  41. Honda K, Ishige T, Kataoka M, Shimizu S (2006) Microbial and enzymatic processes for the production of chiral compounds. In: Patel RN (ed) Biocatalysis in the pharmaceutical and biotechnology industries. Taylor & Francis, New York, pp 529–546Google Scholar
  42. Hummel W (1997) New alcohol dehydrogenases for the synthesis of chiral compounds. Adv Biochem Eng Biotechnol 58:145–184Google Scholar
  43. Hummel W, Kula MR (1989) Dehydrogenases for the synthesis of chiral compounds. Eur J Biochem 184:1–13Google Scholar
  44. Hummel W, Abokitse K, Drauz K, Rollmann C, Gröger H (2003) Towards a large-scale asymmetric reduction process with isolated enzymes: expression of an (S)-alcohol dehydrogenase in E. coli and studies on the synthetic potential of this biocatalyst. Adv Synth Catal 345:153–159Google Scholar
  45. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397Google Scholar
  46. Jaeger KE, Schneidinger B, Rosenau F, Werner M, Lang D, Dijkstra BW, Schimossek K, Zonta A, Reetz MT (1997) Bacterial lipases for biotechnological applications. J Mol Catal B Enzym 3:3–12Google Scholar
  47. Johannes TW, Woodyer RD, Zhao H (2007) Efficient regeneration of NADPH using an engineered phosphite dehydrogenase. Biotechnol Bioeng 96:18–26Google Scholar
  48. Jones JB, Sneddon DW, Higgins W, Lewis A (1972) Preparative-scale reductions of cyclic ketone and aldehyde substrates of horse liver alcohol dehydrogenase with in situ sodium dithionite recycling of catalytic amounts of NAD. J Chem Soc Chem Commun 1972:856–857Google Scholar
  49. Julliard M, Le Petit J, Ritz P (2004) Regeneration of NAD+ cofactor by photosensitized electron transfer in an immobilized alcohol dehydrogenase system. Biotechnol Bioeng 28:1774–1779Google Scholar
  50. Kataoka M, Rohani LPS, Wada M, Kita K, Yanase H, Urabe I, Shimizu S (1998) Escherichia coli transformant expressing the glucose dehydrogenase gene from Bacillus megaterium as a cofactor regenerator in a chiral alcohol production system. Biosci Biotechnol Biochem 62:167–169Google Scholar
  51. Kihumbu D, Stillger T, Hummel W, Liese A (2002) Enzymatic synthesis of all stereoisomers of 1-phenylpropane-1,2-diol. Tetrahedron Asymmetry 13:1069–1072Google Scholar
  52. Kim MJ, Whitesides GM (1988) l-Lactate dehydrogenase: substrate specificity and use as a catalyst in the synthesis of homochiral 2-hydroxy acids. J Am Chem Soc 110:2959–2964Google Scholar
  53. Kizaki N, Yasohara Y, Hasegawa J, Wada M, Kataoka M, Shimizu S (2001) Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 55:590–595Google Scholar
  54. Klibanov AM, Puglisi AV (1980) The regeneration of coenzymes using immobilized hydrogenase. Biotechnol Lett 2:445–450Google Scholar
  55. Koike T, Murata K, Ikariya T (2000) Stereoselective synthesis of optically active α-hydroxy ketones and anti-1,2-diols via asymmetric transfer hydrogenation of unsymmetrically substituted 1,2-diketones. Org Lett 2:3833–3836Google Scholar
  56. Kosjek B, Stampfer W, Pogorevc M, Goessler W, Faber K, Kroutil W (2004) Purification and characterization of a chemotolerant alcohol dehydrogenase applicable to coupled redox reactions. Biotechnol Bioeng 86:55–62Google Scholar
  57. Kragl U, Eckstein M, Kaftzik N (2002) Enzyme catalysis in ionic liquids. Curr Opin Biotechnol 13:565–571Google Scholar
  58. Kruse W, Hummel W, Kragl U (1996) Alcohol-dehydrogenase-catalyzed production of chiral hydrophobic alcohols. A new approach leading to a nearly waste-free process. Recl Trav Chim Pays-Bas 115:239–243Google Scholar
  59. Kula MR, Kragl U (2000) In: Patel RN (ed) Stereoselective biocatalysis. Marcel Dekker, New YorkGoogle Scholar
  60. Kurlemann N, Liese A (2004) Immobilization of benzaldehyde lyase and its application as a heterogeneous catalyst in the continuous synthesis of a chiral 2-hydroxy ketone. Tetrahedron Asymmetry 15:2955–2958Google Scholar
  61. Lamare S, Legoy MD, Graber M (2004) Solid/gas bioreactors: powerful tools for fundamental research and efficient technology for industrial applications. Green Chem 6:445–458Google Scholar
  62. Leksawasdi N, Chow YYS, Breuer M, Hauer B, Rosche B, Rogers PL (2004) Kinetic analysis and modelling of enzymatic (R)-phenylacetylcarbinol batch biotransformation process. J Biotechnol 111:179–189Google Scholar
  63. Leonida MD (2001) Redox enzymes used in chiral syntheses coupled to coenzyme regeneration. Curr Med Chem 8:345–369Google Scholar
  64. Liese A, Karutz M, Kamphuis J, Wandrey C, Kragl U (1996) Enzymatic resolution of 1-phenyl-1,2-ethanediol by enantioselective oxidation: overcoming product inhibition by continuous extraction. Biotechnol Bioeng 51:544–550Google Scholar
  65. Liese A, Zelinski T, Kula MR, Kierkels H, Karutz M, Kragl U, Wandrey C (1998) A novel reactor concept for the enzymatic reduction of poorly soluble ketones. J Mol Catal B Enzym 4:91–99Google Scholar
  66. Liese A, Seelbach C, Wandrey C (2006) Industrial biotransformations (2nd edn.). GmbH, WeinheimGoogle Scholar
  67. Liu J, Hsu CC, Wong CH (2004) Sequential aldol condensation catalyzed by DERA mutant Ser238Asp and a formal total synthesis of atorvastatin. Tetrahedron Lett 45:2439–2441Google Scholar
  68. Lütz S (2006) Transition metal catalyzed regeneration of nicotineamide cofactors. In: de Vries JG, Elsevier CJ (eds) The handbook of homogeneous hydrogenation (vol III). GmbH, Weinheim, pp 1471–1482Google Scholar
  69. Lye GJ, Woodley JM (1999) Application of in situ product-removal techniques to biocatalytic processes. Trends Biotechnol 17:395–402Google Scholar
  70. Makino Y, Ding JY, Negoro S, Urabe I, Okada H (1989) Purification and characterization of a new glucose dehydrogenase from vegetative cells of Bacillus megaterium. J Ferment Bioeng 67:374–379Google Scholar
  71. McWhirter RB, Klapper MH (1990) Semiquinone radicals of methylamine dehydrogenase, methoxatin, and related o-quinones: a pulse radiolysis study. Biochemistry 29:6919–6926Google Scholar
  72. Mertens R, Liese A (2004) Biotechnological application of hydrogenases. Curr Opin Biotechnol 15:343–348Google Scholar
  73. Mertens R, Greiner L, van den Ban ECD, Haaker HBCM, Liese A (2003) Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration. J Mol Catal B Enzym 24–25:39–52Google Scholar
  74. Mochizuki N, Hiramatsu S, Sugai T, Ohta H, Morita H, Itokawa H (1995) Improved conditions for the production and characterization of 1-arylpropane-1,2-diols and related compounds. Biosci Biotechnol Biochem 59:2282–2291CrossRefGoogle Scholar
  75. Müller M (2005) Chemoenzymatische synthese von bausteinen für Statin-Seitenketten. Angew Chem 117:366–369 (also in Angew Chem Int Ed 44:362–365)Google Scholar
  76. Neuhauser W, Steininger M, Haltrich D, Kulbe KD, Nidetzky B (1998) A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration. Biotechnol Bioeng 60:278–282Google Scholar
  77. Nidetzky B, Neuhauser W, Haltrich D, Kulbe KD (1996) Continuous enzymatic production of xylitol with simultaneous coenzyme regeneration in a charged membrane reactor. Biotechnol Bioeng 52:387–396Google Scholar
  78. Orlich B, Berger H, Lade M, Schomacker R (2000) Stability and activity of alcohol dehydrogenases in W/O-emulsions: enantioselective reduction including cofactor regeneration. Biotechnol Bioeng 70:638–646Google Scholar
  79. Patel RN, Banerjee A, McNamee CG, Brzozowski D, Hanson RL, Szarka LJ (1993) Enantioselective Microbial reduction of 3,5-dioxo-6-(benzyloxy) hexanoic acid, ethyl-ester. Enzyme Microb Technol 15:1014–1021Google Scholar
  80. Peters J (1998) Dehydrogenases – characteristics, design of reaction conditions, and applications. In: Rehm HJ, Reed G (eds) Biotechnology Vol 8a: Biotransformations I, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim, pp 393–460Google Scholar
  81. Pohl M, Liese A (2006) Industrial processes using lyases for C–C, C–N and C–O bond formation. In: Patel RN (ed) Biocatalysis in the pharmaceutical and biotechnology industries. Taylor & Francis, New York, pp 661–676Google Scholar
  82. Raunio R, Lilius EM (1971) Effect of dithionite on enzyme activities in vivo. Enzymologia 40:360–368Google Scholar
  83. Reetz MT, Zonta A, Schimossek K, Liebeton K, Jaeger KE (1997) Erzeugung enantioselektiver biokatalysatoren für die organische chemie durch in-vitro-evolution. Angew Chem 109:2961–2963 (also in Angew Chem Int Ed Engl 36:2830–2832)Google Scholar
  84. Rickus JL, Tobin AJ, Zink JI, Dunn B (2002) Photochemical enzyme co-factor regeneration: towards continuous glutamate monitoring with a sol–gel optical biosensor. Mater Res Soc Symp Proc 723:155–160Google Scholar
  85. Rissom S, Beliczey J, Giffels G, Kragl U, Wandrey C (1999) Asymmetric reduction of acetophenone in membrane reactors: comparison of oxazaborolodine and alcohol dehydrogenase catalyzed processes. Tetrahedron Asymmetry 10:923–928Google Scholar
  86. Rosche B, Sandford V, Breuer M, Hauer B, Rogers PL (2002) Enhanced production of R-phenylacetylcarbinol (R-PAC) through enzymatic biotransformation. J Mol Catal B Enzym 19–20:109–115Google Scholar
  87. Rosen TC, Daußmann T, Stohrer J (2004) Bioreduction forms optically active 3-hydroxyesters. Speciality Chemicals Magazine, April, pp 39–40Google Scholar
  88. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268Google Scholar
  89. Schmidt E, Ghisalba O, Gygax D, Sedelmeier G (1992) Optimization of a process for the production of (R)-2-hydroxy-4-phenylbutyric acid—an intermediate for inhibitors of angiotensin converting enzyme. J Biotechnol 24:315–327Google Scholar
  90. Schröder I, Steckhan E, Liese A (2003) In situ NAD+ regeneration using 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) as an electron transfer mediator. J Electroanal Chem 541:109–115Google Scholar
  91. Schubert T, Hummel W, Müller M (2002) Highly enantioselective preparation of multifunctionalized propargylic building blocks. Angew Chem 114:656–659 (also in Angew Chem Int Ed 41:634–637)Google Scholar
  92. Seelbach K, Riebel B, Hummel W, Kula MR, Tishkov VI, Egorov AM, Wandrey C, Kragl U (1996) A novel, efficient regenerating method of NADPH using a new formate dehydrogenase. Tetrahedron Lett 31:1377–1380Google Scholar
  93. Simon H, Bader J, Gunther H, Neumann S, Thanos J (1985) Chirale verbindungen durch biokatalytische reduktionen. Angew Chem 97:541–555 (also in Angew Chem Int Ed Engl 24:539–553)Google Scholar
  94. St. Clair N, Wang YF, Margolin AL (2000) Cofactor-bound cross-linked enzyme crystals (CLEC) of alcohol dehydrogenase. Angew Chem 112:388–391 (also in Angew Chem Int Ed 39:380–383)Google Scholar
  95. Stark D, von Stockar U (2003) In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. In: Scheper T (ed) Advances in biochemical engineering/biotechnology (vol 80). Springer, Berlin Heidelberg New York, pp 149–175Google Scholar
  96. Steckhan E, Herrmann S, Ruppert R, Thömmes J, Wandrey C (1990) Kontinuierliche Erzeugung von NADH aus NAD+ und Formiat mit einem molekulargewichtsvergrößerten Homogenkatalysator in einem Membranreaktor. Angew Chem 102:445–447 (also in Angew Chem Int Ed Engl 29:388–390)Google Scholar
  97. Steckhan E, Herrmann S, Ruppert R, Dietz E, Frede M, Spika E (1991) Analytical study of a series of substituted (2,2′-bipyridyl) (pentamethylcyclopentadienyl)rhodium and -iridium complexes with regard to their effectiveness as redox catalysts for the indirect electrochemical and chemical reduction of NAD(P)+. Organometallics 10:1568–1577Google Scholar
  98. Stillger T, Bönitz M, Filho MV, Liese A (2002) Überwindung von thermodynamischen Limitierungen in substratgekoppelten Cofaktorregenerierungsverfahren. Chem Ing Tech 74:1035–1039Google Scholar
  99. Stillger T, Pohl M, Wandrey C, Liese A (2006) Reaction engineering of benzaldehyde lyase from Pseudomonas fluorescens catalyzing enantioselective C–C bond formation. Org Process Res Dev 10:1172–1177Google Scholar
  100. Takors R (2004) Ganzzell-ISPR-Prozessentwicklung: chancen und risiken. Chem Ing Tech 76:1857–1864Google Scholar
  101. Tao JH, McGee K (2002) Development of a continuous enzymatic process for the preparation of (R)-3-(4-fluorophenyl)-2-hydroxy propionic acid. Org Process Res Dev 6:520–524Google Scholar
  102. Tishkov VI, Galkin AG, Fedorchuk VV, Savitsky PA, Rojkova AM, Gieren H, Kula MR (1999) Pilot scale production and isolation of recombinant NAD+- and NADP+-specific formate dehydrogenases. Biotechnol Bioeng 64:187–193Google Scholar
  103. Trivedi A, Heinemann M, Spieß AC, Daußmann T, Büchs J (2005) Optimization of adsoptive immobilization of alcohol dehydrogenase. J Biosci Bioeng 99:340–347Google Scholar
  104. Trivedi A, Spieß AC, Daußmann T, Büchs J (2006) Study on mesophilic and thermophilic alcohol dehydrogenases in gas-phase reaction. Biotechnol Prog 22:454–458Google Scholar
  105. van Beilen JB, Duetz WA, Schmid A, Witholt B (2003) Practical issues in the application of oxygenases. Trends Biotechnol 21:170–177Google Scholar
  106. Van Rantwijk F, Lau RM, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21:131–138Google Scholar
  107. Villela M, Stillger T, Müller M, Liese A, Wandrey C (2003) Is logP a convenient criterion to guide the choice of solvents for biphasic enzymatic reactions? Angew Chem 115:3101–3104 (also in Angew Chem Int Ed 42:2993–2996)Google Scholar
  108. von Scala C, Fässler P, Gerla J, Maus E (2005) Kontinuierliche herstellung von kosmetischen fettsäureestern mittels reaktivdestillation und pervaporation. Chem Ing Tech 77:1809–1813Google Scholar
  109. Vrtis JM, White AK, Metcalf WW, van der Donk WA (2002) Phosphite dehydrogenase: a versatile cofactor-regeneration enzyme. Angew Chem 114:3391–3393 (also in Angew Chem Int Ed 41:3257–3259)Google Scholar
  110. Vuorilehto K, Lütz S, Wandrey C (2004) Indirect electrochemical reduction of nicotinamide coenzymes. Bioelectrochemistry 65:1–7Google Scholar
  111. Wagenknecht PS, Penney JM, Hembre RT (2003) Transition-metal-catalyzed regeneration of nicotinamide coenzymes with hydrogen. Organometallics 22:1180–1182Google Scholar
  112. Wallner SR, Bauer M, Würdemann C, Wecker P, Glöckner FO, Faber K (2005) Highly enantioselective sec-alkyl sulfatase activity of the marine planctomycete Rhodopirellula baltica shows retention of configuration. Angew Chem 117:6539–6542 (also in Angew Chem Int Ed 44:6381–6384)Google Scholar
  113. Walsh C (1980) Flavin coenzymes: at the crossroads of biological redox chemistry. Acc Chem Res 13:148–155Google Scholar
  114. Wandrey C (2004) Biochemical reaction engineering for redox reactions. Chem Rec 4:254–265Google Scholar
  115. Weckbecker A, Hummel W (2004) Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase. Biotechnol Lett 26:1739–1744Google Scholar
  116. Weckbecker A, Hummel W (2005) Glucose dehydrogenase for the regeneration of NADPH and NADH. In: Barredo JL (ed) Microbial enzymes and biotransformations. Humana, Totowa, NJ, pp 225–238Google Scholar
  117. Weuster-Botz D, Paschold H, Striegel B, Gieren H, Kula MR, Wandrey C (1994) Continuous computer controlled production of formate dehydrogenase (FDH) and isolation on a pilot scale. Chem Eng Technol 17:131–137Google Scholar
  118. Wichmann R, Vasic-Racki D (2005) Cofactor regeneration at the lab scale. In: Kragl U (ed) Advances in biochemical engineering/biotechnology (vol 92). Springer, Berlin Heidelberg New York, pp 225–260Google Scholar
  119. Willner I, Maidan R, Shapira M (1990) Thermal and photochemical regeneration of nicotinamide cofactors and a nicotinamide model Compound Using a water-soluble rhodium phosphine catalyst. J Chem Soc Perkin Trans 2:559–564Google Scholar
  120. Wolberg M, Hummel W, Wandrey C, Müller M (2000) Highly regio- and enantioselective reduction of 3,5-dioxocarboxylates. Angew Chem 112:4476–4478 (also in Angew Chem Int Ed 39:4306–4308)Google Scholar
  121. Wong CH, Daniels L, Orme-Johnson WH, Whitesides GM (1981) Enzyme-catalyzed organic synthesis: NAD(P)H regeneration using dihydrogen and the hydrogenase from Methanobacterium thermoautotrophicum. J Am Chem Soc 103:6227–6238Google Scholar
  122. Yuan R, Watanabe S, Kuwabata S, Yoneyama H (1997) Asymmetric electroreduction of ketone and aldehyde derivatives to the corresponding alcohols using alcohol dehydrogenase as an electrocatalyst. J Org Chem 62:2494–2499Google Scholar
  123. Zelinski T, Liese A, Wandrey C, Kula MR (1999) Asymmetric reductions in aqueous media: enzymatic synthesis in cyclodextrin containing buffers. Tetrahedron Asymmetry 10:1681–1687Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Katja Goldberg
    • 1
  • Kirsten Schroer
    • 2
  • Stephan Lütz
    • 2
  • Andreas Liese
    • 1
  1. 1.Institute of Technical BiocatalysisHamburg University of TechnologyHamburgGermany
  2. 2.Institute of Biotechnology 2Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations