Applied Microbiology and Biotechnology

, Volume 76, Issue 1, pp 47–59 | Cite as

Microbial tannases: advances and perspectives

  • Cristóbal N. Aguilar
  • Raúl Rodríguez
  • Gerardo Gutiérrez-Sánchez
  • Christopher Augur
  • Ernesto Favela-Torres
  • Lilia A. Prado-Barragan
  • Ascensión Ramírez-Coronel
  • Juan C. Contreras-Esquivel
Mini-Review

Abstract

In the last years, tannase has been the subject of a lot of studies due to its commercial importance and complexity as catalytic molecule. Tannases are capable of hydrolyzing complex tannins, which represent the main chemical group of natural anti-microbials occurring in the plants. The general outline of this work includes information of the substrates, the enzyme, and the applications. This review considers in its introduction the concepts and history of tannase and explores scientific and technological aspects. The “advances” trace the route from the general, molecular, catalytic, and functional information obtained under close to optimal conditions for microbial production through purification, description of the enzyme properties, and the commercial applications to the “perspectives” including expression studies, regulation, and potential uses; aspects related to the progress in our understanding of tannin biodegradation are also included.

Keywords

Tannase Tannins biodegradation Microbial sources Advances Perspectives 

References

  1. Abdel-Naby MA, Sherif AA, El-Tanash AB, Mankarios AT (1999) Immobilization of Aspergillus oryzae tannase and properties of the immobilized enzyme. J Appl Microbiol 87:108–114CrossRefGoogle Scholar
  2. Adachi O, Watanabe M, Yamada H (1971) Physicochemical properties of the tannase from Aspergillus flavus. Agric Biol Chem 32:1079–1085Google Scholar
  3. Aguilar CN, Augur C, Favela-Torres E, Viniegra-González G (2001a) Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Proc Biochem 36:565–570CrossRefGoogle Scholar
  4. Aguilar CN, Augur C, Favela-Torres E, Viniegra-González G (2001b) Production of tannase by Aspergillus niger Aa-20 in submerged and solid state fermentation: influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26:296–302CrossRefGoogle Scholar
  5. Aguilar CN, Augur C, Viniegra-González G, Favela-Torres E (1999) A comparison of methods to determine tannin acyl hydrolase activity. Braz Arch Biol Technol 42:355–361Google Scholar
  6. Aguilar CN, Favela-Torres E, Viniegra-González G, Augur C (2002) Culture conditions dictate protease and tannase production in submerged and solid-state cultures by Aspergillus niger Aa-20. Appl Biochem Biotechnol 102–103:407–414CrossRefGoogle Scholar
  7. Aguilar CN, Gutiérrez-Sánchez G (2001) Review sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci Technol Int 7:373–382CrossRefGoogle Scholar
  8. Albertse EK (2002) Cloning, expression and characterization of tannase from Aspergillus species. M.Sc. thesis, Faculty of Natural and Agricultural Sciences, Department of Microbiology and Biotechnology, University of the Free State Bloemfontein, South AfricaGoogle Scholar
  9. Aoki K, Shinke R, Nishira H (1976) Purification and some properties of yeast tannase. Agric Biol Chem 40:79–85Google Scholar
  10. Ayed L, Hamdi M (2002) Culture conditions of tannase production by Lactobacillus plantarum. Biotechnol Lett 24:1763–1765CrossRefGoogle Scholar
  11. Bajpai B, Patil S (1997) Introduction of tannin acyl hydrolase (EC 3.1.1.20) activity in some members of fungi imperfecti. Enzyme Microb Technol 20:612–614CrossRefGoogle Scholar
  12. Banerjee D, Mondal K, Bikas R (2001) Production and characterization of extracellular and intracellular tannase from newly isolated Aspergillus aculeatus DBF9. J Basic Microbiol 6:313–318CrossRefGoogle Scholar
  13. Banerjee R, Mukherjee G, Patra KC (2005) Microbial transformation of tannin-rich substrate to gallic acid through co-culture method. Bioresour Technol 96:949–953CrossRefGoogle Scholar
  14. Barthomeuf C, Regerat F, Pourrat H (1994) Production, purification and characterization of tannase from Aspergillus niger LCF8. J Ferment Technol 77:137–142Google Scholar
  15. Batra A, Saxena RK (2005) Potential tannase producers from the genera Aspergillus and Penicillium. Proc Biochem 40:1553–1557CrossRefGoogle Scholar
  16. Battestin V, Alves-Macedo G (2007) Tannase production by Paecilomyces variotii. Bioresour Technol 98:1832–1837CrossRefGoogle Scholar
  17. Belmares R, Contreras-Esquivel JC, Rodríguez-Herrera R, Ramírez Coronel A, Aguilar CN (2004) Microbial production of tannase: an enzyme with potential use in food industry. Lebensm Wiss Technol 37:857–864CrossRefGoogle Scholar
  18. Bhat TK, Singh B, Sharma OP (1998) Microbial degradation of tannins. A current perspective. Biodegradation 9:343–357CrossRefGoogle Scholar
  19. Boadi DK, Neufeld RJ (2001) Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme Microb Technol 28:590–595CrossRefGoogle Scholar
  20. Bradoo S, Gupta R, Saxena RK (1997) Parametric optimization and biochemical regulation of extracellular tannase from Aspergillus japonicus. Proc Biochem 32:135–139CrossRefGoogle Scholar
  21. Bradoo S, Gupta R, Saxena R (1996) Screening of extracellular tannase producing fungi: development of a rapid simple plate assay. J Gen Appl Microbiol 42:325–329Google Scholar
  22. Cerda-Gomez A, Contreras-Esquivel JC, Reyes-Valdes H, Rodríguez R, Aguilar CN (2006) Molecular characterization of Aspergillus strains producers of tannase. Proceedings of the second international congress on food science and technology in developing countries, Saltillo, Coahuila, Mexico (FEMB-18)Google Scholar
  23. Chae S, Yu T (1983) Experimental manufacture of a com wine by fungal tannase. Hanguk Sipkum Kwahakoechi 15:326–332Google Scholar
  24. Chang FS, Chen PC, Chen RC, Lu FM, Cheng TJ (2006) Real-time assay of immobilized tannase with a stopped-flow conductometric device. Bioelectrochemistry 69:113–116CrossRefGoogle Scholar
  25. Chaterjee R, Dutta A, Banerjee R, Bhattacharyya BC (1996) Production of tannase by solid state fermentation. Bioprocess Eng 14:159–162Google Scholar
  26. Coggon P, Graham NH, Sanderson GW (1975) UK Patent 1,380,135Google Scholar
  27. Contreras-Dominguez M, Guyot S, Marnet N, Le Petit J, Perraud-Gaime I, Roussos S, Augur C (2006) Degradation of procyanidins by Aspergillus fumigatus: identification of a a novel aromatic ring cleavage product. Biochimie 88:1899–1908CrossRefGoogle Scholar
  28. Cruz-Hernández M, Augur C, Rodríguez R, Contreras-Esquivel J, Aguilar CN (2006) Evaluation of culture conditions for tannase production by Aspergillus niger GH1. Food Technol Biotechnol 44:541–544Google Scholar
  29. Deschamps AM, Otuk G, Lebeault JM (1983) Production of tannase and degradation of chestnut tannin by bacteria. J Ferment Technol 61:55–59Google Scholar
  30. Dueñas M, Hernández T, Estrella I (2007) Changes in the content of bioactive polyphenolic compounds of lentils by the action of exogenous enzymes. Effect on their antioxidant activity. Food Chem 101:90–97CrossRefGoogle Scholar
  31. Farias GM, Gorbea C, Elkins JR, Griffin GJ (1994) Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica. Physiol Mol Plant Pathol 44:51–63CrossRefGoogle Scholar
  32. Gaathon A, Gross Z, Rozhanski M (1989) Propyl gallate: enzymatic synthesis in a reverse micelle system. Enzyme Microb Technol 11:604–609CrossRefGoogle Scholar
  33. Gammoun A, Moros J, Tahiri S, Garriques S, Guardia M (2006) Partial least-squares near-infrared determination of hydrocarbons removed from polluted waters by tanned solid wastes. Anal Bioanal Chem 385:766–770CrossRefGoogle Scholar
  34. Ganga PS, Nandy SC, Santappa M (1977) Effect of environmental factors on the production of fungal tannase. Leather Sci 24:8–16Google Scholar
  35. García-Conesa MT, Ostergaard P, Kauppinen S, Williamson G (2001) Hydrolysis of diethyl diferulates by a tannase from Aspergillus oryzae. Carbohydr Polym 44:319–324CrossRefGoogle Scholar
  36. García-Nájera JA, Contreras-Esquivel JC, Rodríguez-Herrera R, Prado-Barragan LA, Aguilar CN (2002) Fungal production of 3,4,5-trihydroxybenzoic acid in submerged culture (in Spanish). Proceedings of the third international symposium on bioprocess engineering, IBT-UNAM, Cuernavaca, Morelos, MexicoGoogle Scholar
  37. García-Peña I (1996) Production and characterization of a tannase produced by Aspergillus níger in solid state culture (in Spanish). M.Sc. thesis, Universidad Autónoma Metropolitana, Iztapalapa, MexicoGoogle Scholar
  38. García-Peña I, Augur C, Favela-Torres E (1999) Partial purification of Aspergillus niger tannase produced by solid state culture (in Spanish). In: Prado A, Huerta S, Rodríguez G, Sancedo G (eds) Advances in enzyme purification and applied biotechnology. Ediciones UAM-Iztapalapa, Mexico, DF, pp 247–261, 2207–2212Google Scholar
  39. Goel G, Puniya AK, Aguilar CN, Singh K. (2005) Interaction of gut microflora with tannins in feeds. Naturwissenschaften 92:497–503CrossRefGoogle Scholar
  40. Goel G, Puniya AK, Singh K (2007) Phenotypic characterization of tannin–protein complex degrading bacteria from faeces of goat. Small Rumin Res 69:217–220CrossRefGoogle Scholar
  41. Hadi TA, Banerjee R, Bhattarcharyya BC (1994) Optimization of tannase biosynthesis by a newly isolated Rhizopus oryzae. Bioprocess Eng 11:239–243Google Scholar
  42. Hatamoto O, Watarai T, Kikuchi M, Mizusawa K, Sekine H (1996) Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 175:215–221CrossRefGoogle Scholar
  43. Hatamoto O, Watarai T, Kikuchi M, Mizusawa K, Sekine H (1997) Erratum to: ‘cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae’ [Gene 175 (1996) 215–221]. Gene 186:1–153CrossRefGoogle Scholar
  44. Huang W, Ni J, Borthwick AGL (2005) Biosynthesis of valonia tannin hydrolase and hydrolysis of valonia tannin to ellagic acid by Aspergillus SHL 6. Process Biochem 40:1245–1249CrossRefGoogle Scholar
  45. Ibuchi S, Minoda Y, Yamada K (1972) Hydrolyzing pathway, substrate specificity and inhibition of tannin acyl hydrolase. Agric Biol Chem 32:803–809Google Scholar
  46. Kar B, Banerjee R (2000) Biosynthesis of tannin acyl hydrolase from tannin rich forest residue under different fermentation conditions. J Ind Microbiol Biotechnol 25:29–38CrossRefGoogle Scholar
  47. Kar B, Banerjee R, Bhattacharyya BC (2002) Optimization of physicochemical parameters for gallic acid production by evolutionary operation-factorial design technique. Process Biochem 37:1395–1401CrossRefGoogle Scholar
  48. Kar B, Banerjee R, Bhattacharyya BC (2003) Effect of additives on the behavioural properties of tannin acyl hydrolase. Process Biochem 38:1285–1293CrossRefGoogle Scholar
  49. Kostinek M, Specht I, Edward VA, Pinto C, Egounlety M, Sossa C, Mbugua S, Dortu C, Thonart P, Taljaard L (2007) Characterisation and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures. Int J Food Microbiol 114:342–351CrossRefGoogle Scholar
  50. Kumar R, Sharma J, Singh R (2006) Production of tannase from Aspergillus ruber under solid state fermentation using jamun (Syzygium cumini) leaves. Microbiol Res (in press).DOI 10.1016/J.micres.2006.06.012
  51. Lee J, Talcott ST (2005) Enzyme hydrolysis of ellagic acid derivatives in muscadine grapes (Vitis rotundifolia). Session 36E, fruit and vegetable products: general. IFT annual meeting, July 15–20, New Orleans, La, USAGoogle Scholar
  52. Lekha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolase: state of the art. Adv Appl Microbiol 44:215–260CrossRefGoogle Scholar
  53. Lekha P, Lonsane B (1994) Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid-state, liquid surface and submerged fermentations. Process Biochem 29:497–503CrossRefGoogle Scholar
  54. Lekha P, Ramakrishna M, Lonsane B (1993) Strategies for isolation of potent culture capable of producing tannin acyl hydrolase in higher titres. Chem Mikrobiol Technol Lebensm 15:5–10Google Scholar
  55. Lewis JA, Starkey RL (1969) Decomposition of plant tannins by some soil microorganisms. Soil Sci 107:235–241CrossRefGoogle Scholar
  56. López-Ríos GF (1984) Fitoquímica, 1st edn. Universidad Autónoma de Chapingo, Estado de México, p 13Google Scholar
  57. Mahapatra K, Nanda RK, Bag SS, Banerjee R, Pandey A, Szakacs G (2005) Purification, characterization and some studies on secondary structure of tannase from Aspergillus awamori nakazawa. Process Biochem 40:3251–3254CrossRefGoogle Scholar
  58. Mahendran B, Raman N, Kim D (2005) Purification and characterization of tannase from Paecilomyces variotii: hydrolysis of tannic acid using immobilized tannase. Appl Microbiol Biotechnol 70:445–451Google Scholar
  59. Mendez A (1984) Energía metabolizable del sorgo y efecto de la adición de aceite a dietas con sorgo dulce o amargo. Avances de investigación (resumenes), Colegio de PostgraduadosGoogle Scholar
  60. Mingshu L, Kai Y, Qiang H, Dongying J (2006) Biodegradation of gallotannins and ellagitannins. J Basic Microbiol 46:68–84CrossRefGoogle Scholar
  61. Mondal K, Banerjee D, Banerjee R, Pati B (2001b) Production and characterization of tannase from Bacillus cereus KBR9. J Gen Appl Microbiol 47:263–267CrossRefGoogle Scholar
  62. Mondal K, Samanta S, Giri S, Pati B (2001a) Distribution of tannic acid degrading microorganisms in the soil and comparative study of tannase from two fungal strains. Acta Microbiol Pol 50:75–82Google Scholar
  63. Mukherjee G, Banerjee R (2005) Effects of temperature, pH and additives on the activity of tannase produced by a co-culture of Rhizopus oryzae and Aspergillus foetidus. World J Microbiol Biotechnol 22:207–211CrossRefGoogle Scholar
  64. Murugan K, Saravanababu S, Arunachalam M (2007) Screening of tannin acyl hydrolase (E.C.3.1.1.20) producing tannery effluent fungal isolates using simple agar plate and SmF process. Bioresour Technol 98:946–949CrossRefGoogle Scholar
  65. Nip WK, Burns EE (1969) Pigment characterization in grain sorghum, I. Red varieties. Cereal Chem 46:490–495Google Scholar
  66. Nishitani Y, Osawa R (2003) A novel colorimetric method to quantify tannase activity of viable bacteria. J Microbiol Methods 54:281–284CrossRefGoogle Scholar
  67. Nishitani Y, Sasaki E, Fujisawa T, Osawa R (2004) Genotypic Analyses of Lactobacilli with a range of tannase activities isolated from human feces and fermented foods. Syst Appl Microbiol 27:109–117CrossRefGoogle Scholar
  68. Nuero OM, Reyes F (2002) Enzymes for animal feeding from Penicillium chrysogenum mycelial wastes from penicillin manufacture. Lett App Microbiol 34:413–416CrossRefGoogle Scholar
  69. Pinto G, Bruno L, Hamacher M, Tarzi S, Couri S (2003) Increase of tannase production in solid state fermentation by Aspergillus niger 3T5B8. 25th Symposium on biotechnology for fuels and chemicals, poster presentation, Breckenridge, CO, USA, pp 3–68Google Scholar
  70. Pinto G, Couri S, Goncalves E (2006) Replacement of methanol by ethanol on gallic acid determination by rhodanine and its impacts on the tannase assay. EJEAFCHe 5:5. http://ejeafche.uvigo.es/5(5)2006/009552006F.htm
  71. Pinto G, Leite S, Tarzi S, Couri S (2001) Selection of tannase-producing Aspergillus niger strains. Braz J Microbiol 32:24–26Google Scholar
  72. Pourrat H, Regerat F, Pourrat A, Jean D (1985) Production of gallic acid from tara tannin by a strain of A. niger. J Ferment Technol 63:401–403Google Scholar
  73. Purohit JS, Dutta JR, Nanda RK, Banerjee R (2006) Strain improvement for tannase production from coculture of Aspergillus foetidus and Rhizopus oryzae. Bioresour Technol 97:795–801CrossRefGoogle Scholar
  74. Raab T, Bel-Rhlid R, Williamson G, Hansen CE, Chaillot D (2007) Enzymatic galloylation of catechins in room temperature ionic liquids. J Mol Catal B Enzym 44:60–65CrossRefGoogle Scholar
  75. Rajkumar GS, Nandy SC (1983) Isolation purification and some properties of Penicillium chrysogenum tannase. Appl Environ Microbiol 46:525–527Google Scholar
  76. Ramirez-Coronel A, Marnet N, Kumar V, Rousses S, Guyot S, Augur C (2004) Characterization and estimation of proanthocyanidins and other phenolics in coffee pulp (Coffea arabica) by thiolysis-high-performance liquid chromatography. J Agric Food Chem 52:1344–1349CrossRefGoogle Scholar
  77. Ramírez-Coronel A, Viniegra-González G, Augur C (1999) Purification of a tannase produced by Aspergillus niger Aa-20, in solid state fermentation. Proceedings of the VIII Mexican congress and IV Latin American congress of biotechnology and bioengineering, Huatulco, Oaxaca, MexicoGoogle Scholar
  78. Ramirez-Coronel MA, Viniegra-Gonzalez G, Darvill A, Augur C (2003) A novel tannase from Aspergillus niger with β-glucosidase activity. Microbiology 149:2941–2946CrossRefGoogle Scholar
  79. Rana N, Bhat T (2005) Effect of fermentation system on the production and properties of tannase of Aspergillus niger van Tieghem MTCC 2425. J Gen Appl Microbiol 51:203–212CrossRefGoogle Scholar
  80. Rout S, Banerjee R (2006) Production of tannase under mSSF and its application in fruit juice debittering. Ind J Biotechnol 5:351–356Google Scholar
  81. Saavedra G, Couri S, Ferreira S, Sousa de Brito E (2005) Tannase: conceitos, producto e aplicacao (in Portuguese). B.CEPPA Curitiba 23:435–462Google Scholar
  82. Sabu A, Pandey A, Jaafar Daud M, Szakacs G (2005) Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresour Technol 96:1223–1228CrossRefGoogle Scholar
  83. Sabu A, Augur C, Swati C, Pandey A (2006) Tannase production by Lactobacillus sp. ASR-S1 under solid-state fermentation. Process Biochem 41:575–580CrossRefGoogle Scholar
  84. Sanchez EE (2001) Applications and potential uses of tannase and tannins (in Spanish). B.Sc. thesis, Universidad Autónoma de Coahuila, Saltillo, Coah, p 25Google Scholar
  85. Sasaki E, Shimada T, Osawa R, Nishitani Y, Spring S, Lang E (2005) Isolation of tannin-degrading bacteria isolated from feces of the Japanese large wood mouse, Apodemus speciosus, feeding on tannin-rich acorns. Syst Appl Microbiol 28:358–365CrossRefGoogle Scholar
  86. Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883CrossRefGoogle Scholar
  87. Sharma S, Gupta MN (2003) Synthesis of antioxidant propyl gallate using tannase from Aspergillus niger van Teighem in nonaqueous media. Bioorg Med Chem Lett 13:395–397CrossRefGoogle Scholar
  88. Sharma S, Bhat TK, Gupta MN (2002) Bioaffinity immobilization of tannase from Aspergillus niger on concavalin A-sepharose CL-4B. Biotechnol Appl Biochem 35:165–169CrossRefGoogle Scholar
  89. Shi B, He Q, Yao K, Huang W, Li Q (2005) Production of ellagic acid from degradation of valonea tannins by Aspergillus niger and Candida utilis. J Chem Technol Biotechnol 80:1154–1159CrossRefGoogle Scholar
  90. Sittig M (1988) Trimethoprim. In: Sittig M (ed) Pharmaceutical manufacturing encyclopedia. William Andrew/Noyes, New Jersey, pp 282–284Google Scholar
  91. Tieghem, P (1867) Sur la fermentation gallique. CR Acad Sci (Paris) 65:1091–1094Google Scholar
  92. Treviño-Cueto B, Luis M, Contreras-Esquivel JC, Rodríguez R, Aguilera A, Aguilar CN (2007) Gallic acid and tannase accumulation during fungal solid state culture of a tannin-rich desert plant (Larrea tridentate Cov). Bioresour Technol 98:721–724CrossRefGoogle Scholar
  93. Van de Lagemaat J, Pyle DL (2001) Solid-state fermentation and bioremediation: development of a continuous process for the production of fungal tannases. Chem Eng J 84:115–123CrossRefGoogle Scholar
  94. Van de Lagemaat J, Pyle DL (2005) Modelling the uptake and growth kinetics of Penicillium glabrum in a tannic acid-containing solid-state fermentation for tannase production. Process Biochem 40:1773–1782CrossRefGoogle Scholar
  95. Van Diepeningen AD, Debet A, Varga J, Van der Gaag M, Swart K, Hoekstra R (2004) Efficient degradation of tannic acid by black Aspergillus species. Mycol Res 108:919–925CrossRefGoogle Scholar
  96. Vaquero I, Marcobal A, Muñoz R (2004) Tannase activity by lactic acid bacteria isolated from grape must and wine. Int J Food Microbiol 96:199–204CrossRefGoogle Scholar
  97. Vattem DA, Shetty K (2002) Solid-state production of phenolic antioxidants from cranberry pomace by Rhizopus oligosporum. Food Biotechnol 16:189–210CrossRefGoogle Scholar
  98. Vattem DA, Shetty K (2003) Ellagic acid production and phenolic antioxidants activity in cranberry pomace (Vaccinium macrocarpo) mediated by Lentinus edodes using a solid-state system. Process Biochem 39:367–379CrossRefGoogle Scholar
  99. Viniegra-González G, Favela-Torres E, Aguilar CN, Rómero-Gomez SJ, Díaz-Godínez G, Augur C (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J 13:157–167CrossRefGoogle Scholar
  100. Vivas N, Laguerrre M, Pianet de Boissel I, Vivas de Gaulejac N, Nonier MF (2004) Conformational interpretation of vascalagin and castalagin physicochemical properties. J Agric Food Chem 52:2073–2078CrossRefGoogle Scholar
  101. Yamada K, Iibuchi S, Minoda Y (1968) Studies on tannin acyl hydrolase of microorganisms. Isolation and identification of producing molds and studies on the conditions of cultivation. Agric Biol Chem 45:233–240Google Scholar
  102. Yoshida T, Amakura Y, Koyura N, Ito H, Isaza JH, Ramírez S, Peláez DP, Renner SS (1999) Oligomeric hydrolysable tannins from Tibouchina multiflora. Phytochemistry 52:1661–1666CrossRefGoogle Scholar
  103. Yu X, Li Y, Wu D (2004) Enzymatic synthesis of gallic acid esters using microencapsulated tannase: effect of organic solvents and enzyme specificity. J Mol Catal B Enzym 30(2):69–73CrossRefGoogle Scholar
  104. Yu XW, Li YQ (2006) Kinetics and thermodynamics of synthesis of propyl gallate by mycelium-bound tannase from Aspergillus niger in organic solvent. J Mol Catal B Enzym 40:44–50CrossRefGoogle Scholar
  105. Zhang YJ, Abe T, Tanaka T, Yang CR, Kouna I (2001) Phyllanemblinins A–F, new ellagitannins from Phyllanthus emblica. J Nat Prod 64:1527–1532CrossRefGoogle Scholar
  106. Zhong X, Peng L, Zheng S, Sun Z, Ren Y, Dong M, Xu A (2004) Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Expr Purif 36:165–169CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Cristóbal N. Aguilar
    • 1
  • Raúl Rodríguez
    • 1
  • Gerardo Gutiérrez-Sánchez
    • 2
  • Christopher Augur
    • 3
  • Ernesto Favela-Torres
    • 4
  • Lilia A. Prado-Barragan
    • 4
  • Ascensión Ramírez-Coronel
    • 4
  • Juan C. Contreras-Esquivel
    • 1
  1. 1.Food Research Department, School of ChemistryUniversidad Autónoma de CoahuilaSaltilloMexico
  2. 2.Complex Carbohydrate Research CenterUniversity of GeorgiaAthensUSA
  3. 3.IRD–Unité Biotrans IMEP Case 441 Faculté des Sciences de Saint JérômeUniversité Paul CézanneMarseille Cedex 20France
  4. 4.Department of BiotechnologyUniversidad Autónoma MetropolitanaIztapalapaMexico

Personalised recommendations