Characterization of a chitinolytic enzyme from Serratia sp. KCK isolated from kimchi juice

  • Hyun-Soo Kim
  • Kenneth N. Timmis
  • Peter N. Golyshin
Biotechnologically Relevant Enzymes and Proteins


The novel chitinolytic bacterium Serratia sp. KCK, which was isolated from kimchi juice, produced chitinase A. The gene coding for the chitinolytic enzyme was cloned on the basis of sequencing of internal peptides, homology search, and design of degenerated primers. The cloned open reading frame of chiA encodes for deduced polypeptide of 563 amino acid residues with a calculated molecular mass of 61 kDa and appears to correspond to a molecular mass of about 57 kDa, which excluded the signal sequence. The deduced amino acid sequence showed high similarity to those of bacterial chitinases classified as family 18 of glycosyl hydrolases. The chitinase A is an exochitinase and exhibits a greater pH range (5.0–10.0), thermostability with a temperature optimum of 40°C, and substrate range other than Serratia chitinases thus far described. These results suggested that Serratia sp. KCK chitinase A can be used for biotechnological applications with good potential.


Chitinolytic bacteria and enzyme Chitinase A Kimchi juice 



We gratefully acknowledge MetaGenoMik Project of Federal Ministry for Science and Education (BMBF) and Fonds der Chemischen Industrie for generous support.


  1. Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035CrossRefGoogle Scholar
  2. Bhushan B (2000) Production and characterization of a thermostable chitinase from a new alkalophilic Bacillus sp. BG-11. J Appl Microbiol 88:800–808CrossRefGoogle Scholar
  3. Cheigh HS, Park KY (1994) Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit Rev Food Sci Nutr 34:175–203CrossRefGoogle Scholar
  4. Chernin LS, Fuente LDL, Sobolev V, Haran S, Vorgias CE, Oppenheim AB, Chet I (1997) Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Appl Environ Microbiol 63:834–839Google Scholar
  5. Cho J, Lee D, Yang C, Jeon J, Kim J, Han H (2006) Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol Lett 257:262–267CrossRefGoogle Scholar
  6. Cohen-Kupiec R, Chet I (1998) The molecular biology of chitin digestion. Curr Opin Biotechnol 9:270–277CrossRefGoogle Scholar
  7. Dahiya N, Tewari R, Singh, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782CrossRefGoogle Scholar
  8. Frankowski J, Lorito M, Scala F, Schmid R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426CrossRefGoogle Scholar
  9. Golyshina OV, Golyshin PN, Timmis KN, Ferrer M (2005) The ‘pH optimum anomaly’ of intracellular enzymes of Ferroplasma acidiphilum. Environ Microbiol 8:416–425CrossRefGoogle Scholar
  10. Gooday GW (1990) Physiology of microbial degradation of chitin and chitosan. Biodegradation 1:177–190CrossRefGoogle Scholar
  11. Hobel CFV, Hreggvidsson GÓ, Marteinsson VT, Bahrani-Mougeot F, Einarsson JM, Kristjánsson JK (2005) Cloning, expression, and characterization of a highly thermostable family 18 chitinase from Rhodothermus marinus. Extremophiles 9:53–64CrossRefGoogle Scholar
  12. Imanaka T, Fukui T, Fujiwara S (2001) Chitinase from Thermococcus kodakaraensis KOD1. Methods Enzymol 330:319–329CrossRefGoogle Scholar
  13. Imoto T, Yagishita K (1971) A simple activity measurement of lysozyme. Agric Biol Chem 35:1154–1156Google Scholar
  14. Kawase T, Yokokawa S, Saito A, Fujii T, Nikaidou N, Miyashita K, Watanabe T (2006) Comparison of enzymatic and antifungal properties between family 18 and 19 chitinase from Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem 70:988–998CrossRefGoogle Scholar
  15. Keyhani NO, Roseman S (1999) Physiological aspects of chitin catabolism in marine bacteria. Biochim Biophys Acta 1473:108–122Google Scholar
  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685CrossRefGoogle Scholar
  17. Lambert C, Leonard N, De Bolle X, Depiereux E (2002) ESyPred3D: Predition of protein 3D structures. Bioinformatics 18:1250–1256CrossRefGoogle Scholar
  18. Lan X, Zhang X, Hu J, Shimosaka M (2006) Cloning, expression and characterization of a chitinase from the chitinolytic bacterium Aeromonas hydrophila strain SUWA-9. Biosci Biotechnol Biochem 70:2437–2442CrossRefGoogle Scholar
  19. Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ, Woese CR (1997) The RDP (Ribosomal Database Project). Nucleic Acids Res 25:109–111CrossRefGoogle Scholar
  20. Nawani NN, Kapadnis BP (2001) One-step purification of chitinase from Serratia marcescens NK1, a soil isolate. J Appl Microbiol 90:803–808CrossRefGoogle Scholar
  21. Ohno T, Armand S, Hata T, Nikaidou N, Henrissat B, Mitsutomi M, Watanabe T (1996) A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J Bacteriol 178:5065–5070Google Scholar
  22. Orikoshi H, Nakayama S, Miyamoto K, Hanato C, Yasuda M, Inamori Y, Tsujibo H (2005) Roles of four chitinases (ChiA, ChiB, ChiC, and ChiD) in the chitin degradation system of marine bacterium Alteromonas sp. strain 0-7. Appl Environ Microbiol 71:1811–1815CrossRefGoogle Scholar
  23. Perrakis A, Tews I, Dauter Z, Oppenheim AB, Chet I, Wilson KS, Vorgias CE (1994) Crystal structure of a bacterial chitinase at 2.3 Å resolution. Structure 2:1169–1180CrossRefGoogle Scholar
  24. Sakai K, Yokota A, Kurokawa H, Wakayama M, Moriguchi M (1998) Purification and characterization of three thermostable endochitinases of a novel Bacillus strain, MH-1, isolated from chitin-containing compost. Appl Environ Microbiol 64:3397–3402Google Scholar
  25. Shigemasa Y, Minami S (1995) Application of chitin and chitosan for biomaterials. Biotechnol Genet Eng Rev 13:383–420Google Scholar
  26. Suzuki K, Sugawara N, Suzuki M, Uchiyama T, Katouno F, Nikaidou N, Watanabe T (2002) Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci Biotechnol Biochem 66:1075–1083CrossRefGoogle Scholar
  27. Svitil AL, Chadhain SMN, Moore JA, Kirchman DL (1997) Chitin degradation proteins produced by the marine bacterium Vibrio harveyi growing on different forms of chitin. Appl Environ Microbiol 63:408–413Google Scholar
  28. Tanaka T, Fukui T, Imanaka T (2001) Different cleavage specificities of the dual catalytic domains in chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Biol Chem 276:35629–35635CrossRefGoogle Scholar
  29. Trudel J, Asselin A (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem 178:362–366CrossRefGoogle Scholar
  30. Tsujibo H, Kubota T, Yamamoto M, Miyamoto K, Inamori Y (2003) Characterization of chitinase genes from an alkaliphilic actinomycete, Nocardiopsis prasina OPC-131. Appl Environ Microbiol 69:894–900CrossRefGoogle Scholar
  31. Vaidya RJ, Macmil SLA, Vyas PR, Chhatpar HS (2003) The novel method for isolating chitinolytic bacteria and its application in screening for hyperchitinase producing mutant of Alcaligenes xylosoxydans. Lett Appl Microbiol 36:129–134CrossRefGoogle Scholar
  32. Wang SL, Chang WT (1997) Purification and characterization of two bifunctional chitinase/lysozyme extracellulary produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Appl Environ Microbiol 63:380–386Google Scholar
  33. Watanabe T, Kimura K, Sumiya T, Nikaidou N, Suzuki K, Suzuki M, Taiyoji M, Ferrer S, Regue M (1997) Genetic analysis of the chitinase system of Serratia marcescens 2170. J Bacteriol 179:7111–7117Google Scholar
  34. Wiwat C, Siwayaprahm P, Bhumiratana A (1999) Purification and characterization of chitinase from Bacillus circulans No.4.1. Curr Microbiol 39:134–140CrossRefGoogle Scholar
  35. Xia G, Jin C, Zhou J, Yang S, Zhang S, Jin C (2001) A novel chitinase having a unique mode of action from Aspergillus fumigatus YJ-407. Eur J Biochem 268:4079–4085CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Hyun-Soo Kim
    • 1
  • Kenneth N. Timmis
    • 1
    • 2
  • Peter N. Golyshin
    • 1
    • 2
  1. 1.Department of Environmental MicrobiologyThe Helmholtz Center for Infection ResearchBraunschweigGermany
  2. 2.Institute for MicrobiologyTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations