Applied Microbiology and Biotechnology

, Volume 76, Issue 3, pp 677–689 | Cite as

Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes

Genomics and Proteomics


For the biotechnological production of l-lysine, mainly strains of Corynebacterium glutamicum are used, which have been obtained by classical mutagenesis and screening or selection or by metabolic engineering. Gene targets for the amplification and deregulation of the lysine biosynthesis pathway, for the improvement of carbon precursor supply and of nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH) regeneration, are known. To identify novel target genes to improve lysine production, the transcriptomes of the classically obtained lysine producing strain MH20-22B and several other C. glutamicum strains were compared. As lysine production by the classically obtained strain, which possesses feedback-resistant aspartokinase and is leucine auxotrophic, exceeds that of a genetically defined leucine auxotrophic wild-type derivative possessing feedback-resistant aspartokinase, additional traits beneficial for lysine production are present. NCgl0855, putatively encoding a methyltransferase, and the amtA-ocd-soxA operon, encoding an ammonium uptake system, a putative ornithine cyclodeaminase and an uncharacterized enzyme, were among the genes showing increased expression in the classically obtained strain irrespective of the presence of feedback-resistant aspartokinase. Lysine production could be improved by about 40% through overexpression of NCgl0855 or the amtA-ocd-soxA operon. Thus, novel target genes for the improvement of lysine production could be identified in a discovery-driven approach based on global gene expression analysis.


Corynebacterium glutamicum L-lysine production DNA microarrays Transcriptomics Strain development 


  1. Ando S, Ochiai K, Yokoi H, Hashimoto S, Yonetani Y (2002) Novel glucose-6-phosphate dehydrogenase. Patent WO0198472 (2002-01-02)Google Scholar
  2. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596CrossRefGoogle Scholar
  3. Bott M, Niebisch A (2005) Respiratory energy metabolism. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, USA, pp 305–332Google Scholar
  4. Broer S, Eggeling L, Kramer R (1993) Strains of Corynebacterium glutamicum with different lysine productivities may have different lysine excretion systems. Appl Environ Microbiol 59:316–321Google Scholar
  5. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, USAGoogle Scholar
  6. Eikmanns BJ, Follettie MT, Griot MU, Sinskey AJ (1989) The phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum: molecular cloning, nucleotide sequence, and expression. Mol Gen Genet 218:330–339CrossRefGoogle Scholar
  7. Eikmanns BJ, Thum-Schmitz N, Eggeling L, Lüdtke KU, Sahm H (1994) Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828CrossRefGoogle Scholar
  8. Georgi T, Rittmann D, Wendisch VF (2005) Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: Roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng 7:291–301CrossRefGoogle Scholar
  9. Glansdorff N, Xu Y (2007) Microbial arginine biosynthesis: pathway, regulation and industrial production. In: Wendisch VF (ed) Amino acid biosynthesis —pathways, regulation and metabolic engineering. Springer, Heidelberg, Germany. DOI 10.1007/7171_2006_061 Google Scholar
  10. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of biuret reaction. J Biol Chem 177:751–766Google Scholar
  11. Gourdon P, Baucher MF, Lindley ND, Guyonvarch A (2000) Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl Environ Microbiol 66:2981–2987CrossRefGoogle Scholar
  12. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580CrossRefGoogle Scholar
  13. Hayashi M, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S, Ikeda M (2006) Transcriptome analysis reveals global expression changes in an industrial l-lysine producer of Corynebacterium glutamicum. Biosci Biotechnol Biochem 70:546–550CrossRefGoogle Scholar
  14. Ishige T, Krause M, Bott M, Wendisch VF, Sahm H (2003) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 185:4519–4529CrossRefGoogle Scholar
  15. Jakoby M, Kramer R, Burkovski A (1999) Nitrogen regulation in Corynebacterium glutamicum: isolation of genes involved and biochemical characterization of corresponding proteins. FEMS Microbiol Lett 173:303–310CrossRefGoogle Scholar
  16. Jakoby M, Nolden L, Meier-Wagner J, Kramer R, Burkovski A (2000) AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol 37:964–977CrossRefGoogle Scholar
  17. Jetten MS, Sinskey AJ (1993) Characterization of phosphoenolpyruvate carboxykinase from Corynebacterium glutamicum. FEMS Microbiol Lett 111:183–188CrossRefGoogle Scholar
  18. Kabus A, Niebisch A, Bott M (2007) Role of cytochrome bd oxidase from Corynebacterium glutamicum for growth and lysine production. Appl Environ Microbiol 73:861–868CrossRefGoogle Scholar
  19. Kalinowski J et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25CrossRefGoogle Scholar
  20. Kelle R, Hermann T, Bathe B (2005) l-Lysine production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, USA, pp 465–488Google Scholar
  21. Kohlhaw GB (1988) Alpha-isopropylmalate synthase from yeast. Methods Enzymol 166:414–423CrossRefGoogle Scholar
  22. Kronemeyer W, Peekhaus N, Kramer R, Sahm H, Eggeling L (1995) Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum. J Bacteriol 177:1152–1158Google Scholar
  23. Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H (2003) Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of l-valine. Appl Environ Microbiol 69:2521–2532CrossRefGoogle Scholar
  24. Marienhagen J, Kennerknecht N, Sahm H, Eggeling L (2005) Functional Analysis of All Aminotransferase Proteins Inferred from the Genome Sequence of Corynebacterium glutamicum. J Bacteriol 187:7639–7646CrossRefGoogle Scholar
  25. Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49:111–129CrossRefGoogle Scholar
  26. Marx A, Striegel K, de Graaf AA, Sahm H, Eggeling L (1997) Response of the central metabolism of Corynebacterium glutamicum to different flux burdens. Biotechnol Bioeng 56:168–180CrossRefGoogle Scholar
  27. Marx A, Eikmanns BJ, Sahm H, de Graaf AA, Eggeling L (1999) Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab Eng 1:35–48CrossRefGoogle Scholar
  28. Marx A, Hans S, Mockel B, Bathe B, de Graaf AA (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104:185–197CrossRefGoogle Scholar
  29. Marx A, Wendisch VF, Kelle R, Buchholz S (2006) Towards integration of biorefinery and microbial amino acid production. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries—industrial processes and products. Status quo and future directions. Wiley-VCH, Weinheim, Germany, pp 201–216Google Scholar
  30. Nakayama K (1972) Lysine and diaminopimelic acid. In: Yamada K, Kinoshita S, Tsunoda T, Aida K (eds) Halsted Press, New York, NY, USA, pp 369–398Google Scholar
  31. Netzer R, Peters-Wendisch P, Eggeling L, Sahm H (2004) Cometabolism of a nongrowth substrate: l-serine utilization by Corynebacterium glutamicum. Appl Environ Microbiol 70:7148–7155CrossRefGoogle Scholar
  32. Niebisch A, Bott M (2003) Purification of a cytochrome bc1-aa3 supercomplex with quinol oxidase activity from Corynebacterium glutamicum. Identification of a fourth subunity of cytochrome aa3 oxidase and mutational analysis of diheme cytochrome c1. J Biol Chem 278:4339–4346CrossRefGoogle Scholar
  33. Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M (2003) Efficient 40 degrees C fermentation of l-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol 62:69–75CrossRefGoogle Scholar
  34. Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased l-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242:265–274CrossRefGoogle Scholar
  35. Patek M (2007) Branched-chain amino acids. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, Heidelberg, Germany. DOI 10.1007/7171_2006_070 Google Scholar
  36. Patek M, Krumbach K, Eggeling L, Sahm H (1994) Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. Appl Environ Microbiol 60:133–140Google Scholar
  37. Peters-Wendisch PG, Wendisch VF, de Graaf AA, Eikmanns BJ, Sahm H (1996) C3-carboxylation as an anaplerotic reaction in phosphoenolpyruvate carboxylase-deficient Corynebacterium glutamicum. Arch Microbiol 165:387–396CrossRefGoogle Scholar
  38. Peters-Wendisch PG, Wendisch VF, Paul S, Eikmanns BJ, Sahm H (1997) Pyruvate carboxylase as an anaplerotic enzyme in Corynebacterium glutamicum. Microbiology 143:1095–1103Google Scholar
  39. Peters-Wendisch PG, Kreutzer C, Kalinowski J, Patek M, Sahm H, Eikmanns BJ (1998) Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology 144:915–927Google Scholar
  40. Peters-Wendisch PG et al (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300Google Scholar
  41. Pfefferle W, Mockel B, Bathe B, Marx A (2003) Biotechnological manufacture of lysine. Adv Biochem Eng Biotechnol 79:59–112Google Scholar
  42. Polen T, Wendisch VF (2004) Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. Appl Biochem Biotechnol 118:215–232CrossRefGoogle Scholar
  43. Polen T, Rittmann D, Wendisch VF, Sahm H (2003) DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. Appl Environ Microbiol 69:1759–1774CrossRefGoogle Scholar
  44. Riedel C, Rittmann D, Dangel P, Mockel B, Petersen S, Sahm H, Eikmanns BJ (2001) Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol 3:573–583Google Scholar
  45. Rittmann D, Schaffer S, Wendisch VF, Sahm H (2003) Fructose-1,6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme. Arch Microbiol 180:285–292CrossRefGoogle Scholar
  46. Sahm H, Eggeling L, de Graaf AA (2000) Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem 381:899–910CrossRefGoogle Scholar
  47. Sambrook J, Russell D (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USAGoogle Scholar
  48. Sauer U, Eikmanns BJ (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794CrossRefGoogle Scholar
  49. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Puhler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73CrossRefGoogle Scholar
  50. Schrumpf B, Schwarzer A, Kalinowski J, Puhler A, Eggeling L, Sahm H (1991) A functionally split pathway for lysine synthesis in Corynebacterium glutamicum. J Bacteriol 173:4510–4516Google Scholar
  51. Schrumpf B, Eggeling L, Sahm H (1992) Isolation and prominent characteristics of an l-lysine hyperproducing strain of Corynebacterium glutamicum. Appl Microbiol Biotechnol 37:566–571CrossRefGoogle Scholar
  52. Shimizu H, Hirasawa T (2007) Production of glutamate and glutamate-related amino acids: molecular mechanism analysis and metabolic engineering. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering, Springer, Heidelberg, Germany (in press). DOI 10.1007/7171_2006_064 Google Scholar
  53. Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M, Kramer R (1996) Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum. J Biol Chem 271:5398–5403CrossRefGoogle Scholar
  54. Simic P, Willuhn J, Sahm H, Eggeling L (2002) Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase l-threonine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:3321–3327CrossRefGoogle Scholar
  55. Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928CrossRefGoogle Scholar
  56. Suzuki H, Tamamura R, Yajima S, Kanno M, Suguro M (2005) Corynebacterium sp. U-96 contains a cluster of genes of enzymes for the catabolism of sarcosine to pyruvate. Biosci Biotechnol Biochem 69:952–956CrossRefGoogle Scholar
  57. Tauch A, Hermann T, Burkovski A, Kramer R, Puhler A, Kalinowski J (1998) Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product. Arch Microbiol 169:303–312CrossRefGoogle Scholar
  58. Thierbach G, Kalinowski J, Bachmann B, Puhler A (1990) Cloning of a DNA fragment from Corynebacterium glutamicum conferring aminoethyl cysteine resistance and feedback resistance to aspartokinase. Appl Microbiol Biotechnol 32:443–448CrossRefGoogle Scholar
  59. Trickey P, Wagner MA, Jorns MS, Mathews FS (1999) Monomeric sarcosine oxidase: structure of a covalently flavinylated amine oxidizing enzyme. Structure 7:331–345CrossRefGoogle Scholar
  60. Tricot C, Stalon V, Legrain C (1991) Isolation and characterization of Pseudomonas putida mutants affected in arginine, ornithine and citrulline catabolism: function of the arginine oxidase and arginine succinyltransferase pathways. J Gen Microbiol 137:2911–2918Google Scholar
  61. Wendisch VF (2003) Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol 104:273–285CrossRefGoogle Scholar
  62. Wendisch VF (2006) Genetic regulation of Corynebacterium glutamicum metabolism. J Microbiol Biotechnol 16:999Google Scholar
  63. Wendisch VF, Zimmer DP, Khodursky A, Peter B, Cozzarelli N, Kustu S (2001) Isolation of Escherichia coli mRNA and comparison of expression using mRNA and total RNA on DNA microarrays. Anal Biochem 290:205–213CrossRefGoogle Scholar
  64. Wendisch VF, Bott M, Eikmanns BJ (2006a) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274CrossRefGoogle Scholar
  65. Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006b) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:74CrossRefGoogle Scholar
  66. Wittmann C, Becker J (2007) The l-lysine story: from metabolic pathways to industrial production. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, Heidelberg, Germany. DOI 10.1007/7171_2006_089 Google Scholar
  67. Wittmann C, de Graaf AA (2005) Metabolic flux analysis in Corynebacterium glutamicum. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, USA, pp 277–304Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Biotechnology IResearch Center JülichJulichGermany
  2. 2.Institute of Molecular Microbiology and BiotechnologyWestfalian Wilhelms University MuensterMuensterGermany
  3. 3.DSM BiologicsGroningenThe Netherlands

Personalised recommendations