Advertisement

Applied Microbiology and Biotechnology

, Volume 75, Issue 1, pp 11–20 | Cite as

Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges

  • Jonathan Kennedy
  • Julian R. Marchesi
  • Alan D. W. Dobson
Mini-Review

Abstract

Natural products isolated from sponges are an important source of new biologically active compounds. However, the development of these compounds into drugs has been held back by the difficulties in achieving a sustainable supply of these often-complex molecules for pre-clinical and clinical development. Increasing evidence implicates microbial symbionts as the source of many of these biologically active compounds, but the vast majority of the sponge microbial community remain uncultured. Metagenomics offers a biotechnological solution to this supply problem. Metagenomes of sponge microbial communities have been shown to contain genes and gene clusters typical for the biosynthesis of biologically active natural products. Heterologous expression approaches have also led to the isolation of secondary metabolism gene clusters from uncultured microbial symbionts of marine invertebrates and from soil metagenomic libraries. Combining a metagenomic approach with heterologous expression holds much promise for the sustainable exploitation of the chemical diversity present in the sponge microbial community.

Keywords

Metagenomics Marine sponges Natural products 

Notes

Acknowledgements

JK is in receipt of a Marie Curie Transfer of Knowledge Host Fellowship (grant no. MTKD-CT-2006-042062). The authors acknowledge a receipt of funding from the Marine Institute in Ireland under the “Biodiscovery Programme” for work in this area.

References

  1. Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR (2006) Marine natural products. Nat Prod Rep 23:26–78CrossRefGoogle Scholar
  2. Beer S, Ilan M (1998) In situ measurements of photosynthetic irradiance responses of two Red Sea sponges growing under dim light conditions. Mar Biol 131:613–617CrossRefGoogle Scholar
  3. Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52:716–722CrossRefGoogle Scholar
  4. Bode HB, Muller R (2005) The impact of bacterial genomics on natural product research. Angew Chem (Int Ed) 44:6828–6846CrossRefGoogle Scholar
  5. Brady SF, Chao CJ, Clardy J (2002) New natural product families from an environmental DNA (eDNA) gene cluster. J Am Chem Soc 124:9968–9969CrossRefGoogle Scholar
  6. Brady SF, Chao CJ, Handelsman J, Clardy J. (2001) Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Org Lett 3:1981–1984CrossRefGoogle Scholar
  7. Crews P, Manes LV, Boehler M (1986) Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis sp. Tetrahedron Lett 27:2797–2800CrossRefGoogle Scholar
  8. Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 70:3724–3732CrossRefGoogle Scholar
  9. Fieseler L, Quaiser A, Schleper C, Hentschel U (2006) Analysis of the first genome fragment from the marine sponge-associated, novel candidate phylum Poribacteria by environmental genomics. Environ Microbiol 8:612–624CrossRefGoogle Scholar
  10. Flowers AE, Garson MJ, Webb RI, Dumdei EJ, Charan RD (1998) Cellular origin of chlorinated diketopiperazines in the dictyoceratid sponge Dysidea herbacea (Keller). Cell Tissue Res 292:597–607CrossRefGoogle Scholar
  11. Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Apylsina aerophoba. FEMS Microbiol Ecol 38:105–113CrossRefGoogle Scholar
  12. Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR, Rondon MR, Clardy J, Goodman RM, Handelsman J (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbol 68:4301–4306CrossRefGoogle Scholar
  13. Gross F, Ring MW, Perlova O, Fu J, Schneider S, Gerth K, Kuhlmann S, Stewart AF, Zhang Y, Muller R (2006) Metabolic engineering of Pseudomonas putida for methylmalonyl-CoA biosynthesis to enable complex heterologous secondary metabolite formation. Chem Biol 13:1253–1264CrossRefGoogle Scholar
  14. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685CrossRefGoogle Scholar
  15. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:245–249CrossRefGoogle Scholar
  16. Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312CrossRefGoogle Scholar
  17. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440CrossRefGoogle Scholar
  18. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177CrossRefGoogle Scholar
  19. Hildebrand M, Waggoner LE, Liu H, Sudek S, Allen S, Anderson C, Sherman DH, Haygood M (2004) bryA: an unusual modular polyketide synthase gene from the uncultivated bacterial symbiont of the marine bryozoan Bugula neritina. Chem Biol 11:1543–1552CrossRefGoogle Scholar
  20. Jansen R, Kunze B, Reichenbach H, Hofle G (1996) Chondramides A-D, new cytostatic and antifungal cyclodepsipeptides from Chondromyces crocatus (Myxobacteria): Isolation and structure elucidation. Liebigs Ann 2:285–290Google Scholar
  21. Julien B, Shah S (2002) Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus. Antimicrob Agents Chemother 46:2772–2778CrossRefGoogle Scholar
  22. Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol 3:937–947CrossRefGoogle Scholar
  23. Khosla C, Keasling JD (2003) Metabolic engineering for drug discovery and development. Nat Rev Drug Discov 2:1019–1025CrossRefGoogle Scholar
  24. Kim TK, Fuerst JA (2006) Diversity of polyketide synthase genes from bacteria associated with the marine sponge Pseudoceratina clavata: culture-dependent and culture-independent approaches. Environ Microbiol 8:1460–1470CrossRefGoogle Scholar
  25. Kim TK, Garson MJ, Fuerst JA (2005) Marine actinomycetes related to the “Salinospora” group from the Great Barrier Reef sponge Pseudoceratina clavata. Environ Microbiol 7:509–518CrossRefGoogle Scholar
  26. Kobayashi J, Ishibashi M (1993) Bioactive metabolites of symbiotic marine organisms. Chem Rev 93:1753–1770CrossRefGoogle Scholar
  27. Kuznetsov G, Towle MJ, Cheng H, Kawamura T, TenDyke K, Liu D, Kishi Y, Yu MJ, Littlefield BA (2004) Induction of morphological and biochemical apoptosis following prolonged mitotic blockage by halichondrin B macrocyclic ketone analog E7389. Cancer Res 64:5760–5766CrossRefGoogle Scholar
  28. Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251CrossRefGoogle Scholar
  29. Loganzo F, Discafani CM, Annable T, Beyer C, Musto S, Hari M, Tan X, Hardy C, Hernandez R, Baxter M, Singanallore T, Khafizova G, Poruchynsky MS, Fojo T, Nieman JA, Ayral-Kaloustian S, Zask A, Andersen RJ, Greenberger LM (2003) HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res 63:1838–1845Google Scholar
  30. Long PF, Dunlap WC, Battershill CN, Jaspars M (2005) Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production. ChemBioChem 6:1760–1765CrossRefGoogle Scholar
  31. MacNeil IA, Tiong CL, Minor C, August PR, Grossman TH, Loiacono KA, Lynch BA, Phillips T, Narula S, Sundaramoorthi R, Tyler A, Aldredge T, Long H, Gilman M, Holt D, Osburne MS. (2001) Expression and isolation of antimicrobial small molecules from soil DNA libraries. J Mol Microbiol Biotechnol 3:301–308Google Scholar
  32. Margot H, Acebal C, Toril E, Amils R, Fernandez Puentes JL (2002) Consistent association of crenarchael Archae with sponges of the genus Axinella. Mar Biol 140:739–745CrossRefGoogle Scholar
  33. Martinez A, Kolvek SJ, Yip CL, Hopke J, Brown KA, MacNeil IA, Osburne MS (2004) Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol 70:2452–2463CrossRefGoogle Scholar
  34. Mendola D (2003) Aquaculture of three phyla of marine invertebrates to yield bioactive metabolites: process developments and economics. Biomol Eng 20:441–458CrossRefGoogle Scholar
  35. Mickel SJ, Sedelmeier GH, Niederer D, Daeffler R, Osmani A, Schreiner K, Seeger-Weibel M, Berod B, Schaer K, Gamboni R, Chen S, Chen W, Jagoe CT, Kinder FR, Loo M, Prasad K, Repic O, Shieh WC, Wang RM, Waykole L, Xu DD, Xue S (2004a) Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 1: synthetic strategy and preparation of a common precursor. Org Process Res Dev 8:92–100CrossRefGoogle Scholar
  36. Mickel SJ, Sedelmeier GH, Niederer D, Schuerch F, Grimler D, Koch G, Daeffler R, Osmani A, Hirni A, Schaer K, Gamboni R, Bach A, Chaudhary A, Chen S, Chen W, Hu B, Jagoe CT, Kim HY, Kinder FR, Liu Y, Lu Y, McKenna J, Prashad M, Ramsey TM, Repic O, Rogers L, Shieh WC, Wang RM, Waykole L (2004b) Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 2: synthesis of fragments C1-6 and C9-14. Org Process Res Dev 8:101–106CrossRefGoogle Scholar
  37. Mickel SJ, Sedelmeier GH, Niederer D, Schuerch F, Koch G, Kuesters E, Daeffler R, Osmani A, Seeger-Weibel M, Schmid E, Hirni A, Schaer K, Gamboni R, Bach A, Chen S, Chen W, Geng P, Jagoe CT, Kinder FR, Lee GT, McKenna J, Ramsey TM, Repic O, Rogers L, Shieh WC, Wang RM, Waykole L (2004c) Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 3: synthesis of fragment C15-21. Org Process Res Dev 8:107–112CrossRefGoogle Scholar
  38. Mickel SJ, Sedelmeier GH, Niederer D, Schuerch F, Seger M, Schreiner K, Daeffler R, Osmani A, Bixel D, Loiseleur O, Cercus J, Stettler H, Schaer K, Gamboni R, Bach A, Chen GP, Chen W, Geng P, Lee GT, Loeser E, McKenna J, Kinder FR, Konigsberger K, Prasad K, Ramsey TM, Reel N, Repic O, Rogers L, ShiehWC, Wang RM, Waykole L, Xue S, Florence G, Paterson I (2004d) Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 4: preparation of fragment C7-24. Org Process Res Dev (Article) 8:113–121CrossRefGoogle Scholar
  39. Mickel SJ, Niederer D, Daeffler R, Osmani A, Kuesters E, Schmid E, Schaer K, Gamboni R, Chen W, Loeser E, Kinder FR, Konigsberger K, Prasad K, Ramsey TM, Repic O, Wang RM, Florence G, Lyothier I, Paterson I (2004e) Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 5: linkage of fragments C1-6 and C7-24 and finale. Org Process Res Dev 8:122–130CrossRefGoogle Scholar
  40. Mutka SC, Carney JR, Liu Y, Kennedy J (2006) Heterologous production of epothilone C and D in Escherichia coli. Biochemistry 45:1321–1330CrossRefGoogle Scholar
  41. Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17:215–234CrossRefGoogle Scholar
  42. Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037CrossRefGoogle Scholar
  43. Newman DJ, Hill RT (2006a) New drugs from marine microbes: the tide is turning. J Ind Microbiol Biotech 33:539–544CrossRefGoogle Scholar
  44. Newman JD, Marshall J, Chang M, Nowroozi F, Paradise E, Pitera D, Newman KL, Keasling JD (2006b) High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol Bioeng 95:684–691CrossRefGoogle Scholar
  45. Olson JB, Lord CC, McCarthy (2000) Improved recoverability of microbial colonies from marine sponge samples. Microb Ecol 40:139–147Google Scholar
  46. Pfeifer BA, Khosla C (2001) Biosynthesis of polyketides in heterologous hosts. Microbiol Mol Biol Rev 65:106–118CrossRefGoogle Scholar
  47. Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291:1790–1792CrossRefGoogle Scholar
  48. Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21:519–538CrossRefGoogle Scholar
  49. Piel J (2006) Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr Med Chem 13:39–50CrossRefGoogle Scholar
  50. Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusentani N, Matsunaga S (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial sumbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci USA 101:16222–16227CrossRefGoogle Scholar
  51. Rachid S, Krug D, Kunze B, Kochems I, Scharfe M, Zabriskie TM, Blocker H, Muller R (2006) Molecular and biochemical studies of chondramide formation—highly cytotoxic natural products from Chondromyces crocatus Cm c5. Chem Biol 13:667–681CrossRefGoogle Scholar
  52. Ridley CP, Bergquist PR, Harper MK, Faulkner DJ, Hooper JNA, Haygood MG (2005) Speciation and biosynthetic variation in four dictoceratid sponges and their cyanobacterial symbiont, Oscaillatoria spongeliae. Chem Biol 12:397–406CrossRefGoogle Scholar
  53. Rutzler K (1985) Associations between Caribbean sponges and photosynthetic organisms. In: Rutzler K (ed) New perspectives in sponge biology. Smithsonian Institution, Washington, pp 455–466Google Scholar
  54. Santavy DL, Willenz P, Colwell RR (1990) Phenotypic study of bacteria associated with the Caribbean sclerosponge Ceratoporella nicholsoni. Appl Environ Microbiol 56:1750–1762Google Scholar
  55. Selvin J, Joseph S, Asha KRT, Manjusha WA, Sangeetha VS, Jayaseema DM, Antony MC, Denslin Vinitha AJ (2004) Antibacterial potential of antagonistic Streptomyces sp. Isolated from marine spone Dendrilla nigra. FEMS Microbiol Ecol 50:117–122CrossRefGoogle Scholar
  56. Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 71:4840–4849CrossRefGoogle Scholar
  57. Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, “Candidatus Entheonella palauensis”. Mar Biol 136:969–977CrossRefGoogle Scholar
  58. Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci USA 102:7315–7320CrossRefGoogle Scholar
  59. Sipkema D, Franssen MCR, Osinga R, Tramper J, Wijffels RH (2005) Marine sponges as pharmacy. Mar Biotechnol 7:142–162CrossRefGoogle Scholar
  60. Taylor MW, Schupp PJ, Dahllof I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6:121–130CrossRefGoogle Scholar
  61. Taylor MW, Schupp PJ, de Nys R, Kjelleberg S, Steinberg PD (2005) Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ Microbiol 7:419–433CrossRefGoogle Scholar
  62. Thoms C, Horn M, Wagner M, Hentschel U, Proksch P (2003) monitoring microbial diversity and natural product profiles of the sponge Aplysina cavernicola following transplantation. Mar Biol 142:685–692Google Scholar
  63. Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11CrossRefGoogle Scholar
  64. Usher KM, Fromont J, Sutton DC, Toze S (2004) The biogeography and phylogeny of unicellular cyanobacterial symbionts in sponges from Australia and the Mediteranean. Microb Ecol 48:167–177CrossRefGoogle Scholar
  65. Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314CrossRefGoogle Scholar
  66. Vacelet J, Fialamedioni A, Fisher CR, Bouryesnault N (1996) Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge. Mar Ecol Prog Ser 145:77–85Google Scholar
  67. Wang G (2006) Diversity and biotechnological potential of the sponge associated microbial consortia. J Ind Microbiol Biotech 33:545–551CrossRefGoogle Scholar
  68. Wang GY, Graziane E, Waters B, Pan W, Li X, McDermott J, Meurer G, Saxena G, Anderson RJ, Davies J (2000) Novel natural products from soil DNA libraries in a streptomycete host. Org Lett 2:2401–2404CrossRefGoogle Scholar
  69. Webster NS, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an alpha-proteobacterium. Mar Biol 138:843–851CrossRefGoogle Scholar
  70. Webster NS, Watts JEM, Hill RT (2001a) Detection and phylogenetic analysis of novel crenarchaeote and euryarchaeote 16S ribosomal RNA gene sequences from a Great Barrier Reef sponge. Mar Biotechnol 3:600–608CrossRefGoogle Scholar
  71. Webster NS, Wilson KJ, Blackall LL, Hill RT (2001b) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444CrossRefGoogle Scholar
  72. Webster NS, Negri AP, Munro MMHG, Bettershill CN (2004) Diverse microbial communities inhabit Antartic sponges. Env Microbiol 6:288–300CrossRefGoogle Scholar
  73. Wenzel SC, Gross F, Zhang Y, Fu J, Stewart AF, Muller R (2005) Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via red/ET recombineering. Chem Biol 12:349–356CrossRefGoogle Scholar
  74. Wilkinson CR, Nowak M, Austin B, Colwell RR (1981) Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef Australia sponges. Microb Ecol 7:13–22CrossRefGoogle Scholar
  75. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Bio Rev 62:695–724Google Scholar
  76. Zhang H, Lee YK, Zhang W, Lee HK (2006) Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene–RFLP analysis. Antonie van Leeuwenhoek 90:159–169CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jonathan Kennedy
    • 2
  • Julian R. Marchesi
    • 1
    • 3
  • Alan D. W. Dobson
    • 1
    • 2
  1. 1.Department of MicrobiologyUniversity College CorkCorkIreland
  2. 2.Environmental Research InstituteUniversity College CorkCorkIreland
  3. 3.Alimentary Pharmabiotic CentreUniversity College CorkCorkIreland

Personalised recommendations