Advertisement

Hairy root type plant in vitro systems as sources of bioactive substances

  • Milen I. Georgiev
  • Atanas I. Pavlov
  • Thomas Bley
Mini-Review

Abstract

“Hairy root” systems, obtained by transforming plant tissues with the “natural genetic engineer” Agrobacterium rhizogenes, have been known for more than three decades. To date, hairy root cultures have been obtained from more than 100 plant species, including several endangered medicinal plants, affording opportunities to produce important phytochemicals and proteins in eco-friendly conditions. Diverse strategies can be applied to improve the yields of desired metabolites and to produce recombinant proteins. Furthermore, recent advances in bioreactor design and construction allow hairy root-based technologies to be scaled up while maintaining their biosynthetic potential. This review highlights recent progress in the field and outlines future prospects for exploiting the potential utility of hairy root cultures as “chemical factories” for producing bioactive substances.

Keywords

Agrobacterium rhizogenes Hairy roots Secondary metabolites Bioreactors 

Notes

Acknowledgements

We thank V. Georgiev, M.Sc., for preparing the figures. This work has been supported by a Marie Curie Fellowship of the European Community program “Development Host Fellowships” under contract number HPMD-CT-2001-00092 and Marie Curie European Reintegration Grant under contract number MERG-CT-2005-021344.

References

  1. Asplund TA, Curtis WR (2001) Intrinsic oxygen use kinetics of transformed root culture. Biotechnol Prog 17:481–489CrossRefGoogle Scholar
  2. Bais HP, Govindaswamy S, Ravishankar GA (2000) Enhancement of growth and coumarin production in hairy root cultures of Witloof chicory (Cichorium intybus L. cv. Lucknow local) under the influence of fungal elicitors. J Biosci Bioeng 90:648–653CrossRefGoogle Scholar
  3. Berkov S, Pavlov A, Kovacheva P, Stanimirova P, Philipov S (2003) Alkaloid spectrum in diploid and tetraploid hairy root cultures of Datura stramonium. Z Naturforsch C 58:42–46Google Scholar
  4. Berlin J (1990) Screening and selection for variant cell lines with increased levels of secondary metabolites. In: Charlwood BV, Rhodes MJC (eds) Secondary products from plant tissue culture. Clarendon, Oxford, pp 119–138Google Scholar
  5. Bhagwath SG, Hjortsø MA (2000) Statistical analysis of elicitation strategies for thiarubrine A production in hairy root cultures of Ambrosia artemisiifolia. J Biotechnol 80:159–167CrossRefGoogle Scholar
  6. Boitel-Conti M, Gontier E, Laberche J-C, Ducrocq C, Sangwan-Noreel BS (1996) Inducer effect of Tween 20 permeabilization treatment used for release of stored tropane alkaloids in Datura innoxia Mill. hairy root cultures. Plant Cell Rep 16:241–244Google Scholar
  7. Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851CrossRefGoogle Scholar
  8. Chen H, Chen F, Chiu FCK, Lo CMY (2001) The effect of yeast elicitor on the growth and secondary metabolism of hairy root cultures of Salvia miltiorrhiza. Enzyme Microb Technol 28:100–105CrossRefGoogle Scholar
  9. Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorogenesis. Cell 11:263–271CrossRefGoogle Scholar
  10. Chilton MD, Saiki RK, Yadav N, Gordon MP, Quetier F (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA of crown gall tumour cells. Proc Natl Acad Sci USA 77:4060–4064CrossRefGoogle Scholar
  11. Choi PS, Kim YD, Chung HJ, Choi DW, Liu JR (2004) Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Plant Cell Rep 22:828–831CrossRefGoogle Scholar
  12. Crane C, Wright E, Dixon RA, Wang Z-Y (2006) Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed root and Agrobacterium rhizogenes-transformed hairy roots. Planta 223:1344–1354CrossRefGoogle Scholar
  13. Curtis WR (2000) Hairy roots, bioreactor growth. In: Spier RE (ed) Encyclopedia of cell technology, vol 2. Wiley, New York, pp 827–841Google Scholar
  14. Dechaux C, Boitel-Conti M (2005) A strategy for overaccumulation of scopolamine in Datura innoxia hairy root culture. Acta Biol Cracov Ser Bot 47:101–107Google Scholar
  15. Doernenburg H, Knorr D (1995) Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme Microb Technol 17:674–684CrossRefGoogle Scholar
  16. Doran PM (2006) Foreign protein degradation and instability in plants and plant tissue cultures. Trends Biotechnol 24:426–432CrossRefGoogle Scholar
  17. Eibl R, Eibl D (2006) Design and use of the wave bioreactor for plant cell culture. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering. Focus on biotechnology, vol 6. Springer, pp 203–227Google Scholar
  18. Flores H, Medina-Bolivar H (1995) Root cultures and plant natural products: “unearthing” the hidden half of plant metabolism. In: Watad A (ed) Plant tissue culture and biotechnology, vol 1. Balaban Publisher, UK, pp 59–74Google Scholar
  19. Flores HE, Hoy MW, Pickard JJ (1987) Secondary metabolites from root cultures. Trends Biotechnol 5:64–69Google Scholar
  20. Fowler MW (2006) Plants, medicines and man. J Sci Food Agric 86(12):1797–1804CrossRefGoogle Scholar
  21. Fu C-X, Xu Y-J, Zhao D-X, Ma FS (2006) A comparison between hairy root cultures and wild plants of Saussurea involucrata in phenylpropanoids production. Plant Cell Rep 24:750–754CrossRefGoogle Scholar
  22. Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and interaction. Annu Rev Plant Physiol Plant Mol Biol 51:223–256CrossRefGoogle Scholar
  23. Georgiev M, Heinrich M, Kerns G, Pavlov A, Bley T (2006a) Production of iridoids and phenolics by transformed Harpagophytum procumbens root cultures. Eng Life Sci 6:593–596CrossRefGoogle Scholar
  24. Georgiev M, Pavlov A, Ilieva M (2006b) Selection of high rosmarinic acid producing Lavandula vera MM cell lines. Process Biochem 41:2068–2071CrossRefGoogle Scholar
  25. Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006a) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346CrossRefGoogle Scholar
  26. Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006b) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24:403–409CrossRefGoogle Scholar
  27. Heyon KJI, Yoo YJE (2002) Optimization of SOD biosynthesis by controlling sucrose concentration in the culture of carrot hairy root. J Microbiol Biotechnol 12:617–621Google Scholar
  28. Heyon KJI, Yoo YJE (2003) Adaptive estimation of hairy root mass using conductometry. J Microbiol Biotechnol 13:641–646Google Scholar
  29. Hu Zh-B, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121–127CrossRefGoogle Scholar
  30. Huang S-Y, Chou S-N (2006) Elucidation of the effects of nitrogen source on proliferation transformed hairy roots and secondary metabolite productivity in a mist trickling reactor by redox potential measurement. Enzyme Microb Technol 38:803–813CrossRefGoogle Scholar
  31. Huang Z, Mu Y, Zhou Y, Chen W, Xu K, Yu Z, Bian Y, Yang Q (1997) Transformation of Taxus brevifolia by Agrobacterium rhizogenes and taxol production in hairy root culture. Acta Bot Yunnanica 19:292–296Google Scholar
  32. Jeong G-T, Park D-H, Ryu H-W, Hwang B, Woo J-C (2004) Effects of inoculum conditions on growth of hairy roots of Panax ginseng C.A. Meyer. Appl Biochem Biotechnol 113–116:1193–1203CrossRefGoogle Scholar
  33. Jin UH, Chun JA, Han MO, Lee JW, Yi YB, Lee SW, Chung CH (2005) Sesame hairy root cultures for extra-cellular production of a recombinant fungal phytase. Process Biochem 40:3754–3762CrossRefGoogle Scholar
  34. Joubert P, Beaupere D, Lelievre P, Wadouachi A, Sangwan RS, Sangwan-Norreel BS (2002) Effect of phenolic compounds on Agrobacterium vir genes and gene transfer induction—a plausible molecular mechanism of phenol binding protein activation. Plant Sci 162:733–743CrossRefGoogle Scholar
  35. Jouhikainen K, Lindgren L, Jokelainen T, Hiltunen R, Teeri TH, Oksman-Caldentey KM (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta 208:545–551CrossRefGoogle Scholar
  36. Jung H-Y, Kang S-M, Kang Y-M, Kang M-J, Yun D-J, Bahk J-D, Yang J-K, Choi M-S (2003) Enhanced production of scopolamine by bacterial elicitors in adventitious hairy root cultures of Scopolia parviflora. Enzyme Microb Technol 33:987–990CrossRefGoogle Scholar
  37. Kamada H, Okamura N, Satake M, Harada H, Shimomura K (1986) Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep 5:239–242CrossRefGoogle Scholar
  38. Kieran P (2001) Bioreactor design for plant cell suspension cultures. In: Cabral JMS (ed) Principles of multiphase reactor design. Harwood Academic Publishers, pp 391–426Google Scholar
  39. Kim YH, Yoo YJ (1996) Peroxidase production from carrot hairy root cell culture. Enzyme Microb Technol 18:531–535CrossRefGoogle Scholar
  40. Kim Y, Wyslouzil BE, Weathers PJ (2002) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10Google Scholar
  41. Kwon BM, Ro SH, Kim MK, Nam JY, Jung HJ, Lee IR, Kim YK, Bok SH (1997) Polyacetilene analogs isolated from hairy roots of Panax ginseng, inhibit acyl-CoA-cholesterol. Planta Med 63:552–553CrossRefGoogle Scholar
  42. Lavania U (2005) Genomic and ploidy manipulation for enhanced production of phyto-pharmaceuticals. Plant Gene Res 3:170–177Google Scholar
  43. Le Flem-Bonhomme V, Laurain-Mattar D, Fliniaux MA (2004) Hairy root induction of Papaver somniferum var. album, a difficult-to-transform plant by A. rhizogenes LBA 9402. Planta 218:890–893CrossRefGoogle Scholar
  44. Lee TH, Chang YK, Chung BH, Park YH (1998) Correlation of redox potential with state variables in cultures under controlled dissolved oxygen concentration and pH. Biotechnol Prog 14:959–962CrossRefGoogle Scholar
  45. Li W, Asada Y, Yoshikawa T (1998) Antimicrobial flavonoids from Glycyrrhiza glabra hairy root cultures. Planta Med 64:746–747CrossRefGoogle Scholar
  46. Li F-X, Jin Z-P, Zhao D-X, Cheng L-Q, Fu C-X, Ma F (2006) Overexpression of the Saussurea medusa chalcone isomerase gene in S. involucrate hairy root cultures enhances their biosynthesis of apigenin. Phytochemistry 67:553–560CrossRefGoogle Scholar
  47. Lorence A, Medina-Bolivar F, Nessler CL (2004) Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep 22:437–441CrossRefGoogle Scholar
  48. Mano Y, Nabeshima S, Matsui C, Ohkawa H (1986) Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agric Biol Chem 50:2715–2722Google Scholar
  49. McAlister B, Finnie J, Watt MP, Blakeway F (2005) Use of the temporary immersion bioreactor system (RITA®) for the production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell Tissue Organ Cult 81:347–358CrossRefGoogle Scholar
  50. Muehlbach H-P (1998) Use of plant cultures in biotechnology. In: El-Gewely MR (ed) Biotechnology annual review, vol 4. Elsevier Science BV, pp 113–176Google Scholar
  51. Mukundan U, Hjortsø MA (1990) Effect of fungal elicitor on thiophene production in hairy root cultures of Tagetes patula. Appl Microbiol Biotechnol 33:145–147CrossRefGoogle Scholar
  52. Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol-genes in the formation of hairy roots. Physiol Plantarum 100:463–473CrossRefGoogle Scholar
  53. Nin S, Bennici A, Roselli G, Mariotti D, Schiff S, Magherini R (1997) Agrobacterium-mediated transformation of Artemisia absinthium L. (wormwood) and production of secondary metabolites. Plant Cell Rep 16:725–730CrossRefGoogle Scholar
  54. Palazon J, Moyano E, Cusido RM, Bonfill M, Oksman-Caldentey K-M, Pinol MT (2003a) Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene. Plant Sci 165:1289–1295CrossRefGoogle Scholar
  55. Palazon J, Cusido RM, Bonfill M, Mallol A, Moyano E, Morales C, Pinol MT (2003b) Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production. Plant Physiol Biochem 41:1019–1025CrossRefGoogle Scholar
  56. Palazon J, Mallol A, Eibl R, Lettenbauer C, Cusido RM, Pinol MT (2003c) Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med 69:344–349CrossRefGoogle Scholar
  57. Park S-U, Facchini PJ (2000) Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum L., and California poppy, Eschscholzia californica Cham., root cultures. J Exp Bot 347:1005–1016CrossRefGoogle Scholar
  58. Pavlov A, Bley T (2005) Betalains biosynthesis by Beta vulgaris L. hairy root culture in different bioreactor systems. Scientific Works, University of Food Technologies 52:299–304Google Scholar
  59. Pavlov A, Bley T (2006) Betalains biosynthesis by Beta vulgaris L. hairy root culture in a temporary immersion cultivation system. Process Biochem 41:848–852CrossRefGoogle Scholar
  60. Pavlov A, Kovatcheva P, Georgiev V, Koleva I, Ilieva M (2002) Biosynthesis and radical scavenging activity of betalains during the cultivation of Red beet (Beta vulgaris) hairy root cultures. Z Naturforsch C 57:640–644Google Scholar
  61. Pavlov A, Georgiev V, Kovatcheva P (2003) Relationship between type and age of inoculum and betalains biosynthesis by B. vulgaris hairy root culture. Biotechnol Lett 25:307–309CrossRefGoogle Scholar
  62. Payne J, Hamill JD, Robins RJ, Rhodes MJC (1987) Production of hyoscyamine by hairy root cultures of Datura stramonium. Planta Med 53:474–478CrossRefGoogle Scholar
  63. Pitta-Alvarez SI, Spollansky TC, Guilietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microb Technol 26:252–258CrossRefGoogle Scholar
  64. Rahman L, Ikenaga T, Kitamura Y (2004) Penicillin derivatives induce chemical structure-dependent root development, and application for plant transformation. Plant Cell Rep 22:668–677CrossRefGoogle Scholar
  65. Ramakrishnan D, Curtis WR (2004) Trickle-bed root culture bioreactor design and scale-up: growth, fluid-dynamics and oxygen mass transfer. Biotechnol Bioeng 88:248–260CrossRefGoogle Scholar
  66. Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153CrossRefGoogle Scholar
  67. Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Morena DA, Ripoll C, Yakoby N, O’Neal J, Cornwell T, Pastor I, Fridlender B (2002) Plants and human health in the twenty-first century. Trends Biotechnol 20:522–531CrossRefGoogle Scholar
  68. Rischer H, Oresic M, Seppanen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MCE, Inze D, Oksman-Caldentey K-M, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci USA 103:5614–5619CrossRefGoogle Scholar
  69. Saito K, Sudo H, Yamazaki M, Koseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Rep 20:267–271CrossRefGoogle Scholar
  70. Sevon N, Oksman-Caldentey K-M (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868CrossRefGoogle Scholar
  71. Shanks JV, Morgan J (1999) Plant “hairy root” culture. Curr Opin Biotechnol 10:151–155CrossRefGoogle Scholar
  72. Sharp JM, Doran PM (2001) Strategies for enhancing monoclonal antibody accumulation in plant cell and organ cultures. Biotechnol Prog 17:979–992CrossRefGoogle Scholar
  73. Sim SJ, Chang HN, Liu JR, Jung KH (1994) Production and secretion of indole alkaloids in hairy root cultures of Catharanthus roseus: effect of in situ adsorption, fungal elicitation and permeabilization. J Ferment Bioeng 78:229–234CrossRefGoogle Scholar
  74. Sivakumar G, Yu KW, Hahn EJ, Paek KY (2005) Optimization of organic nutrients for ginseng hairy roots production in large-scale bioreactors. Curr Sci 89:641–649Google Scholar
  75. Staniszewska I, Krolicka A, Malinski E, Lojkowska E, Szafranek J (2003) Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme Microb Technol 33:565–568CrossRefGoogle Scholar
  76. Sudha CG, Obul Reddy B, Ravishankar GA, Seeni S (2003) Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook f., a rare and endemic medicinal plant. Biotechnol Lett 25:631–636CrossRefGoogle Scholar
  77. Sung L-S, Huang S-Y (2000) Medium optimization of transformed root cultures of Stizolobium hassjoo producing l-DOPA with response surface methodology. Biotechnol Prog 16:1135–1140CrossRefGoogle Scholar
  78. Sung L-S, Huang S-Y (2006) Lateral root bridging as a strategy to enhance l-DOPA production in Stizolobium hassjoo hairy root cultures by using a mesh hindrance mist trickling bioreactor. Biotechnol Bioeng 94:441–447CrossRefGoogle Scholar
  79. Suresh B, Rajasekaran T, Rao SR, Raghavarao KSMS, Ravishankar GA (2001) Studies on osmolarity, conductivity and mass transfer for selection of a bioreactor for Tagetes patula L. hairy roots. Process Biochem 36:987–993CrossRefGoogle Scholar
  80. Thorup JE, McDonald KA, Jackman AP, Bhatia N, Dandekar AM (1994) Ribosome-inactivating protein production from Trichosanthes kirilowii plant cell cultures. Biotechnol Prog 10:345–352CrossRefGoogle Scholar
  81. Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336CrossRefGoogle Scholar
  82. Tzfira T, Citovsky V (2003) The Agrobacterium–plant cell interaction. Taking biology lessons from a bug. Plant Physiol 133:943–947CrossRefGoogle Scholar
  83. Tzfira T, Li J, Lacroix B, Citovsky V (2004) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20:375–383CrossRefGoogle Scholar
  84. Uozumi N (2004) Large-scale production of hairy root. In: Scheper T, Kobayashi T (eds) Advances in biochemical engineering/biotechnology, vol 91. Springer, Berlin, pp 75–103Google Scholar
  85. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25CrossRefGoogle Scholar
  86. Weathers P, Bunk G, McCoy MC (2005) The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots. In Vitro Cell Dev Biol Plant 41:47–53CrossRefGoogle Scholar
  87. Weising K, Kahl G (1996) Natural genetic engineering of plant cells: the molecular biology of crown gall and hairy root disease. World J Microbiol Biotechnol 2:327–351CrossRefGoogle Scholar
  88. Wilhelmson A, Hakkinen ST, Kallio PT, Oksman-Caldentey K-M, Nuutila AM (2006) Heterologous expression of Vitreoscilla hemoglobin (VHb) and cultivation conditions affect the alkaloid profile of Hyoscyamus muticus hairy roots. Biotechnol Prog 22:350–358CrossRefGoogle Scholar
  89. Wilson PDG (1997) The pilot-scale cultivation of transformed roots. In: Doran PM (ed) Hairy roots and culture applications. Harwood Academic Publishers, Amsterdam, pp 179–190Google Scholar
  90. Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhoevel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A, Wildi E, Ripplinger P (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Gene Res 3:90–100CrossRefGoogle Scholar
  91. Wysokinska H, Chmiel A (1997) Transformed root cultures for biotechnology. Acta Biotechnol 17:131–159CrossRefGoogle Scholar
  92. Xie D, Zou Z, Ye H, Li H, Guo Z (2001) Selection of hairy root clones of Artemisia annua L. for artemisinin production. Isr J Plant Sci 49:129–134CrossRefGoogle Scholar
  93. Yukimune Y, Hara Y, Yamada Y (1994) Tropane alkaloid production in root cultures of Duboisia myoporoides obtained by repeated selection. Biosci Biotechnol Biochem 58:1443–1446CrossRefGoogle Scholar
  94. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Milen I. Georgiev
    • 1
  • Atanas I. Pavlov
    • 2
  • Thomas Bley
    • 1
  1. 1.Institute of Food Technology and Bioprocess EngineeringDresden University of TechnologyDresdenGermany
  2. 2.Department of Microbial Biosynthesis and Biotechnologies—Laboratory in Plovdiv, Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria

Personalised recommendations