Applied Microbiology and Biotechnology

, Volume 74, Issue 6, pp 1163–1174 | Cite as

Outdoor cultivation of microalgae for carotenoid production: current state and perspectives

  • José A. Del Campo
  • Mercedes García-González
  • Miguel G. Guerrero
Mini-Review

Abstract

Microalgae are a major natural source for a vast array of valuable compounds, including a diversity of pigments, for which these photosynthetic microorganisms represent an almost exclusive biological resource. Yellow, orange, and red carotenoids have an industrial use in food products and cosmetics as vitamin supplements and health food products and as feed additives for poultry, livestock, fish, and crustaceans. The growing worldwide market value of carotenoids is projected to reach over US$1,000 million by the end of the decade. The nutraceutical boom has also integrated carotenoids mainly on the claim of their proven antioxidant properties. Recently established benefits in human health open new uses for some carotenoids, especially lutein, an effective agent for the prevention and treatment of a variety of degenerative diseases. Consumers’ demand for natural products favors development of pigments from biological sources, thus increasing opportunities for microalgae. The biotechnology of microalgae has gained considerable progress and relevance in recent decades, with carotenoid production representing one of its most successful domains. In this paper, we review the most relevant features of microalgal biotechnology related to the production of different carotenoids outdoors, with a main focus on β-carotene from Dunaliella, astaxanthin from Haematococcus, and lutein from chlorophycean strains. We compare the current state of the corresponding production technologies, based on either open-pond systems or closed photobioreactors. The potential of scientific and technological advances for improvements in yield and reduction in production costs for carotenoids from microalgae is also discussed.

Keywords

Carotenoid Microalgae Lutein Astaxanthin Dunaliella 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors thank Drs. Fernández Sevilla, Acién Fernández, and Molina Grima—from the Department of Chemical Engineering, University of Almería, Spain—for providing unpublished data on lutein content and productivity of Scenedesmus almeriensis, as well as the photobioreactor photograph. Work from the authors’ laboratory was supported by grants PPQ2001-3832-C02-01 and BIO2004-05834-C02-02, from Plan Nacional, Ministerio de Educación y Ciencia (cofinanced with FEDER funds from EU), IFAPA (CO3-125), and Plan Andaluz de Investigación (group no. CVI131), Spain.

References

  1. Alves-Rodrigues A, Shao A (2004) The science behind lutein. Toxicol Lett 150:57–83CrossRefGoogle Scholar
  2. Astorg P (1997) Food carotenoids and cancer prevention: an overview of current research. Trends Food Sci Technol 8:406–413CrossRefGoogle Scholar
  3. Ben-Amotz A (1995) New mode of Dunaliella biotechnology: two-phase growth for β-carotene production. J Appl Phycol 7:65–68CrossRefGoogle Scholar
  4. Ben-Amotz A (1999) Dunaliella β-carotene: from science to commerce. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer, Netherlands, pp 401–410Google Scholar
  5. Ben-Amotz A (2004) Industrial production of microalgal cell-mass and secondary products—major industrial species. Dunaliella. In: Richmond A (ed) Handbook of microalgal culture. Biotechnology and applied phycology. Blackwell Science, Oxford, UK, pp 273–280Google Scholar
  6. Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–125CrossRefGoogle Scholar
  7. Ben-Amotz A, Shaish A (1992) β-carotene biosynthesis. In: Avron M, Ben-Amotz A (eds) Dunaliella: physiology, biochemistry and biotechnology. CRC Press, Boca Raton, Florida, pp 206–216Google Scholar
  8. Bhosale P, Bernstein PS (2005) Microbial xanthophylls. Appl Microbiol Biotechnol 68:445–455CrossRefGoogle Scholar
  9. Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG (2007) Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol 73:1259–1266CrossRefGoogle Scholar
  10. Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15CrossRefGoogle Scholar
  11. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321CrossRefGoogle Scholar
  12. Borowitzka MA, Borowitzka LJ (1988) Dunaliella. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, UK, pp 27–58Google Scholar
  13. Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117CrossRefGoogle Scholar
  14. Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32:1077–1082Google Scholar
  15. Cerón-García MC, García-Malea MC, Rivas J, Acien FG, Fernández-Sevilla JM, del Rio E, Guerrero MG, Molina-Grima E (2007) Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture an a function of their carotenoid and fatty acid content. Appl Microbiol Biotechnol (in press). DOI  10.1007/s00253-006-0743-5
  16. Chaumont D, Thépenier C (1995) Carotenoid content in growing cells of Haematococcus pluvialis during a sunlight cycle. J Appl Phycol 7:529–537CrossRefGoogle Scholar
  17. Cysewski GR, Todd Lorenz R (2004) Industrial production of microalgal cell-mass and secondary products—species of high potential. Haematococcus. In: Richmond A (ed) Handbook of microalgal culture. Biotechnology and applied phycology. Blackwell Science, Oxford, UK, pp 281–288Google Scholar
  18. Del Campo JA, Moreno J, Rodríguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae. Factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59CrossRefGoogle Scholar
  19. Del Campo JA, Rodríguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 81:289–295CrossRefGoogle Scholar
  20. Del Campo JA, Rodríguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854CrossRefGoogle Scholar
  21. Del Río E, Acién FG, García-Malea MC, Rivas J, Molina-Grima E, Guerrero MG (2005a) Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. J Biotechnol 91:808–815Google Scholar
  22. Del Río E, Blanco AM, Rivas J, Guerrero MG (2005b) Performance of maintained astaxanthin generation by Haematococcus pluvialis in a one-step continuous system. In: Abstracts 10th international conference on applied phycology, Kunming, China, pp 111–112Google Scholar
  23. Demming-Adams B, Adams WW III (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153CrossRefGoogle Scholar
  24. Dunahay TG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57–58:223–231CrossRefGoogle Scholar
  25. Dwyer JH, Navab M, Dwyer KM, Hassan K, Sun P, Shircore A, Hama-Levy S, Hough G, Wang X, Drake T, Merz NB, Fogelman AM (2001) Oxygenated carotenoid lutein and the progression of early atherosclerosis. The Los Angeles atherosclerosis study. Circulation 103:2922–2927Google Scholar
  26. Edge R, McGarvey DJ, Truscott TG (1997) The carotenoids as antioxidants—a review. J Photochem Photobiol B Biol 41:189–200CrossRefGoogle Scholar
  27. Eom H, Lee C-G, Jin ES (2006) Gene expression profile analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. Planta 223:1231–1242CrossRefGoogle Scholar
  28. Fábregas J, Otero A, Maseda A, Domínguez A (2001) Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J Biotechnol 89:65–71CrossRefGoogle Scholar
  29. Fábregas J, Domínguez A, Maseda A, Otero A (2003) Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl Microbiol Biotechnol 61:545–551Google Scholar
  30. García-González M, Moreno J, Cañavate JP, Anguis V, Prieto A, Manzano C, Florencio FJ, Guerrero MG (2003) Conditions for open-air outdoor culture of Dunaliella salina in Southern Spain. J Appl Phycol 15:177–184CrossRefGoogle Scholar
  31. García-González M, Moreno J, Manzano C, Florencio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis β-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115:81–90CrossRefGoogle Scholar
  32. García-Malea MC, Del Río E, Casas López JL, Acién Fernández FG, Fernández Sevilla JM, Rivas J, Guerrero MG, Molina Grima E (2006) Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. J Biotechnol 123:329–342CrossRefGoogle Scholar
  33. George SB, Lawrence JM, Lawrence AL, Smiley J, Plank L (2001) Carotenoids in the adult diet enhance egg and juvenile production in the sea urchin Lytechinus variegatus. Aquaculture 199:353–369CrossRefGoogle Scholar
  34. Granado F, Olmedilla B, Blanco I (2003) Nutritional and clinical relevance of lutein in human health. Brit J Nutr 90:487–502CrossRefGoogle Scholar
  35. Grossman AR, Lohr M, Im CS (2004) Chlamydomonas reinhardtii in the landscape of pigments. Annu Rev Genet 38:119–173CrossRefGoogle Scholar
  36. Gudin C (2003) Une historie naturelle de la séduction. Éditions du Seuil, Paris, FranceGoogle Scholar
  37. Gudin C, Chaumont D (1980) A biotechnology of photosynthetic cells based on the use of solar energy. Biochem Soc Trans 8:481–482Google Scholar
  38. Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216CrossRefGoogle Scholar
  39. Guerrero MG, Del Río E, Acién FG, García-Malea MC, Rivas J, Molina-Grima E (2006) Influence of nitrogen supply and irradiance on astaxanthin accumulation by Haematococcus pluvialis in continuous culture. In: Abstracts of 2nd FEMS congress of European microbiologists. Integrating microbial knowledge into human life, Madrid, p 118Google Scholar
  40. Harker M, Tsavalos AJ, Young AJ (1995) Use of response surface methodology to optimise carotenogenesis in the microalga Haematococcus pluvialis. J Appl Phycol 7:399–406CrossRefGoogle Scholar
  41. Hejazi MA, Lamarliere C, Rocha JMS, Vermüe M, Tramper J, Wijffels RH (2002) Selective extraction of carotenoids from the microalga Dunaliella salina with retention of viability. Biotechnol Bioeng 79:30–36CrossRefGoogle Scholar
  42. Hejazi MA, Anddrysiewicz E, Tramper J, Wijffels RH (2003) Effect of mixing rate on β-carotene production and extraction by Dunaliella salina in two-phase bioreactor. Biotechnol Bioeng 84:591–596CrossRefGoogle Scholar
  43. Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196CrossRefGoogle Scholar
  44. Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69:443–449CrossRefGoogle Scholar
  45. Johnson EA, Schroeder WA (1995) Microbial carotenoids. Adv Biochem Eng Biotechnol 53:119–178Google Scholar
  46. Kang CD, Lee JS, Park TH, Sim SJ (2005) Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl Microbiol Biotechnol 68:237–241CrossRefGoogle Scholar
  47. Kim HW, Chew BP, Wong TS, Park JS, Weng BBC, Byrne KM, Hayek MG, Reinhart GA (2000a) Modulation of humoral and cell-mediated immune responses by dietary lutein in cats. Vet Immunol Immunopathol 73:331–341CrossRefGoogle Scholar
  48. Kim HW, Chew BP, Wong TS, Park JS, Weng BBC, Byrne KM, Hayek MG, Reinhart GA (2000b) Dietary lutein stimulates immune response in the canine. Vet Immunol Immunopathol 74:315–327CrossRefGoogle Scholar
  49. Kobayashi M, Kakizono T, Nagai S (1991) Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media. J Ferment Bioeng 71:335–339CrossRefGoogle Scholar
  50. Kobayashi M, Kakizono T, Nagai S (1992a) Effect of carbon/nitrogen (C/N) ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74:403–405CrossRefGoogle Scholar
  51. Kobayashi M, Kakizono T, Nishio N, Nagai S (1992b) Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74:61–63CrossRefGoogle Scholar
  52. Koh HH, Murray IJ, Nolan D, Carden D, Feather J, Beatty S (2004) Plasma and macular responses to lutein supplement in subjects with and without age-related maculopathy: a pilot study. Exp Eye Res 79:21–27CrossRefGoogle Scholar
  53. Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26:459–516CrossRefGoogle Scholar
  54. Krinsky NI, Landrum JT, Bone RA (2003) Biological mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23:171–201CrossRefGoogle Scholar
  55. Lee YK, Ding SY (1995) Effect of dissolved oxygen partial pressure on the accumulation of astaxanthin in chemostat cultures of Haematococcus lacustris (Chlorophyta). J Phycol 31:922–924CrossRefGoogle Scholar
  56. Lee YK, Soh CW (1991) Accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). J Phycol 27:575–577CrossRefGoogle Scholar
  57. León-Bañares R, González-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52CrossRefGoogle Scholar
  58. Mares-Perlman JA, Millen AE, Ficek TL, Hankinson SE (2002) The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J Nutr 132:5185–5245Google Scholar
  59. Margalith PZ (1999) Production of ketocarotenoids by microalgae. Appl Microbiol Biotechnol 51:431–438CrossRefGoogle Scholar
  60. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136CrossRefGoogle Scholar
  61. Mendes-Pinto MM, Raposo MFJ, Bowen J, Young AJ, Morais R (2001) Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications on bio-availability. J Appl Phycol 13:19–24CrossRefGoogle Scholar
  62. Molina-Grima E, Acién Fernández FG, García Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer and scaleup. J Biotechnol 70:231–247CrossRefGoogle Scholar
  63. Molina-Grima E, Acién Fernández FG, Robles Medina A (2004) Downstream processing of cell-mass and products. In: Richmond A (ed) Handbook of microalgal culture. Biotechnology and applied phycology. Blackwell Science, Oxford, UK, pp 215–251Google Scholar
  64. Negro JJ, Garrido-Fernández J (2000) Astaxanthin is the major carotenoid in tissues of white storks (Ciconia ciconia) feeding on introduced crayfish (Procambarus clarkii). Comp Biochem Physiol Part B Biochem Mol Biol 126:347–352CrossRefGoogle Scholar
  65. Ninet L, Renault J (1979) In: Peppler HJ, Perlman D (eds) Microbiol technology, 2nd edn. Academic, New York, pp 529–530Google Scholar
  66. Olaizola M (2000) Commercial production of astaxanthin from Haematococus pluvialis using 25,000-liter outdoor photobioreactor. J Appl Phycol 12:499–506CrossRefGoogle Scholar
  67. Olaizola M, Huntley ME (2003) Recent advances in commercial production of astaxanthin from microalgae. In: Fingerman M, Nagabhushanam R (eds) Biomaterials and bioprocessing. Enfield Science Publishers, pp 143–164Google Scholar
  68. Olmedilla B, Granado F, Blanco I, Vaquero M (2003) Lutein, but not α-tocopherol, supplementation improves visual function in patients with age-related cataracts: a 2-y double-blind, placebo-controlled pilot study. Nutrition 19:21–24CrossRefGoogle Scholar
  69. Orosa M, Valero JF, Herrero C, Abalde J (2001) Comparison of the accumulation of astaxanthin in Haematococcus and other green microalgae under N-starvation and high light conditions. Biotechnol Lett 23:1079–1085CrossRefGoogle Scholar
  70. Orosa M, Franqueira D, Cid A, Abalde J (2005) Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. Bioresour Technol 96:373–378CrossRefGoogle Scholar
  71. Piccaglia R, Marotti M, Grandi S (1998) Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Ind Crops Prod 8:45–51CrossRefGoogle Scholar
  72. Pulz O (2001) Photobioreactors: production systems of phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293CrossRefGoogle Scholar
  73. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648CrossRefGoogle Scholar
  74. Richmond A (2004) Handbook of microalgal culture. Biotechnology and applied phycology. Blackwell Science, Oxford, UKGoogle Scholar
  75. Salter GJ, Kell DB (1995) Solvent selection for whole cell biotransformation in organic media. Crit Rev Biotechnol 15:139–177CrossRefGoogle Scholar
  76. Sandmann G (2001) Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. Trends Plant Sci 6:14–17CrossRefGoogle Scholar
  77. Sansawa H, Endo H (2004) Production of intracellular phytochemicals in Chlorella under heterotrophic conditions. J Biosci Bioeng 98:437–444Google Scholar
  78. Shi X, Zhengyun W, Chen F (2006) Kinetic model of lutein production by heterotrophic Chlorella at various pH and temperature. Mol Nutr Food Res 50:763–768CrossRefGoogle Scholar
  79. Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72:7477–7484CrossRefGoogle Scholar
  80. Todd Lorenz R, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167CrossRefGoogle Scholar
  81. Tredici M (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Science, Oxford, UK, pp 178–214Google Scholar
  82. Walker TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24:629–641CrossRefGoogle Scholar
  83. Wang SB, Hu Q, Sommerfeld M, Chen F (2004) Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae). Proteomics 4:692–708CrossRefGoogle Scholar
  84. Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344CrossRefGoogle Scholar
  85. Whitehead AJ, Mares JA, Danis RP (2006) Macular pigment: a review of current knowledge. Arch Ophtalmol 124:1038–1045CrossRefGoogle Scholar
  86. Zaslavskaia LA, Lippmeier JC, Shih C, Erhardt D, Grossman AR, Apt K (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075CrossRefGoogle Scholar
  87. Zhang DH, Lee YK (1997) Enhanced accumulation of secondary carotenoids in a mutant of the green alga, Chlorococcum sp. J Appl Phycol 9:459–463CrossRefGoogle Scholar
  88. Zlotnik IS, Sukenik A, Dubinsky Z (1993) Physiological and photosynthetic changes during the formation of red aplanospores in the chlorophyte Haematococcus pluvialis. J Phycol 29:463–469CrossRefGoogle Scholar
  89. Zorn H, Breithaupt DE, Takenberg M, Schwack W, Berger RG (2003) Enzymatic hydrolysis of carotenoid esters of marigold flowers (Tagetes erecta L.) and red paprika (Capsicum annuum L.) by commercial lipases and Pleorotus sapidus extracellular lipase. Enzyme Microb Technol 32:623–628CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • José A. Del Campo
    • 1
  • Mercedes García-González
    • 1
  • Miguel G. Guerrero
    • 1
  1. 1.Instituto de Bioquímica Vegetal y FotosíntesisUniversidad de Sevilla-Consejo Superior de Investigaciones CientíficasSevillaSpain

Personalised recommendations