Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Outdoor cultivation of microalgae for carotenoid production: current state and perspectives

Abstract

Microalgae are a major natural source for a vast array of valuable compounds, including a diversity of pigments, for which these photosynthetic microorganisms represent an almost exclusive biological resource. Yellow, orange, and red carotenoids have an industrial use in food products and cosmetics as vitamin supplements and health food products and as feed additives for poultry, livestock, fish, and crustaceans. The growing worldwide market value of carotenoids is projected to reach over US$1,000 million by the end of the decade. The nutraceutical boom has also integrated carotenoids mainly on the claim of their proven antioxidant properties. Recently established benefits in human health open new uses for some carotenoids, especially lutein, an effective agent for the prevention and treatment of a variety of degenerative diseases. Consumers’ demand for natural products favors development of pigments from biological sources, thus increasing opportunities for microalgae. The biotechnology of microalgae has gained considerable progress and relevance in recent decades, with carotenoid production representing one of its most successful domains. In this paper, we review the most relevant features of microalgal biotechnology related to the production of different carotenoids outdoors, with a main focus on β-carotene from Dunaliella, astaxanthin from Haematococcus, and lutein from chlorophycean strains. We compare the current state of the corresponding production technologies, based on either open-pond systems or closed photobioreactors. The potential of scientific and technological advances for improvements in yield and reduction in production costs for carotenoids from microalgae is also discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alves-Rodrigues A, Shao A (2004) The science behind lutein. Toxicol Lett 150:57–83

  2. Astorg P (1997) Food carotenoids and cancer prevention: an overview of current research. Trends Food Sci Technol 8:406–413

  3. Ben-Amotz A (1995) New mode of Dunaliella biotechnology: two-phase growth for β-carotene production. J Appl Phycol 7:65–68

  4. Ben-Amotz A (1999) Dunaliella β-carotene: from science to commerce. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer, Netherlands, pp 401–410

  5. Ben-Amotz A (2004) Industrial production of microalgal cell-mass and secondary products—major industrial species. Dunaliella. In: Richmond A (ed) Handbook of microalgal culture. Biotechnology and applied phycology. Blackwell Science, Oxford, UK, pp 273–280

  6. Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–125

  7. Ben-Amotz A, Shaish A (1992) β-carotene biosynthesis. In: Avron M, Ben-Amotz A (eds) Dunaliella: physiology, biochemistry and biotechnology. CRC Press, Boca Raton, Florida, pp 206–216

  8. Bhosale P, Bernstein PS (2005) Microbial xanthophylls. Appl Microbiol Biotechnol 68:445–455

  9. Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG (2007) Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol 73:1259–1266

  10. Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15

  11. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

  12. Borowitzka MA, Borowitzka LJ (1988) Dunaliella. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, UK, pp 27–58

  13. Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117

  14. Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32:1077–1082

  15. Cerón-García MC, García-Malea MC, Rivas J, Acien FG, Fernández-Sevilla JM, del Rio E, Guerrero MG, Molina-Grima E (2007) Antioxidant activity of Haematococcuspluvialis cells grown in continuous culture an a function of their carotenoid and fatty acid content. Appl Microbiol Biotechnol (in press). DOI https://doi.org/10.1007/s00253-006-0743-5

  16. Chaumont D, Thépenier C (1995) Carotenoid content in growing cells of Haematococcus pluvialis during a sunlight cycle. J Appl Phycol 7:529–537

  17. Cysewski GR, Todd Lorenz R (2004) Industrial production of microalgal cell-mass and secondary products—species of high potential. Haematococcus. In: Richmond A (ed) Handbook of microalgal culture. Biotechnology and applied phycology. Blackwell Science, Oxford, UK, pp 281–288

  18. Del Campo JA, Moreno J, Rodríguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae. Factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59

  19. Del Campo JA, Rodríguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 81:289–295

  20. Del Campo JA, Rodríguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854

  21. Del Río E, Acién FG, García-Malea MC, Rivas J, Molina-Grima E, Guerrero MG (2005a) Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. J Biotechnol 91:808–815

  22. Del Río E, Blanco AM, Rivas J, Guerrero MG (2005b) Performance of maintained astaxanthin generation by Haematococcus pluvialis in a one-step continuous system. In: Abstracts 10th international conference on applied phycology, Kunming, China, pp 111–112

  23. Demming-Adams B, Adams WW III (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

  24. Dunahay TG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57–58:223–231

  25. Dwyer JH, Navab M, Dwyer KM, Hassan K, Sun P, Shircore A, Hama-Levy S, Hough G, Wang X, Drake T, Merz NB, Fogelman AM (2001) Oxygenated carotenoid lutein and the progression of early atherosclerosis. The Los Angeles atherosclerosis study. Circulation 103:2922–2927

  26. Edge R, McGarvey DJ, Truscott TG (1997) The carotenoids as antioxidants—a review. J Photochem Photobiol B Biol 41:189–200

  27. Eom H, Lee C-G, Jin ES (2006) Gene expression profile analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. Planta 223:1231–1242

  28. Fábregas J, Otero A, Maseda A, Domínguez A (2001) Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J Biotechnol 89:65–71

  29. Fábregas J, Domínguez A, Maseda A, Otero A (2003) Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl Microbiol Biotechnol 61:545–551

  30. García-González M, Moreno J, Cañavate JP, Anguis V, Prieto A, Manzano C, Florencio FJ, Guerrero MG (2003) Conditions for open-air outdoor culture of Dunaliella salina in Southern Spain. J Appl Phycol 15:177–184

  31. García-González M, Moreno J, Manzano C, Florencio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis β-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115:81–90

  32. García-Malea MC, Del Río E, Casas López JL, Acién Fernández FG, Fernández Sevilla JM, Rivas J, Guerrero MG, Molina Grima E (2006) Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. J Biotechnol 123:329–342

  33. George SB, Lawrence JM, Lawrence AL, Smiley J, Plank L (2001) Carotenoids in the adult diet enhance egg and juvenile production in the sea urchin Lytechinus variegatus. Aquaculture 199:353–369

  34. Granado F, Olmedilla B, Blanco I (2003) Nutritional and clinical relevance of lutein in human health. Brit J Nutr 90:487–502

  35. Grossman AR, Lohr M, Im CS (2004) Chlamydomonas reinhardtii in the landscape of pigments. Annu Rev Genet 38:119–173

  36. Gudin C (2003) Une historie naturelle de la séduction. Éditions du Seuil, Paris, France

  37. Gudin C, Chaumont D (1980) A biotechnology of photosynthetic cells based on the use of solar energy. Biochem Soc Trans 8:481–482

  38. Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

  39. Guerrero MG, Del Río E, Acién FG, García-Malea MC, Rivas J, Molina-Grima E (2006) Influence of nitrogen supply and irradiance on astaxanthin accumulation by Haematococcus pluvialis in continuous culture. In: Abstracts of 2nd FEMS congress of European microbiologists. Integrating microbial knowledge into human life, Madrid, p 118

  40. Harker M, Tsavalos AJ, Young AJ (1995) Use of response surface methodology to optimise carotenogenesis in the microalga Haematococcus pluvialis. J Appl Phycol 7:399–406

  41. Hejazi MA, Lamarliere C, Rocha JMS, Vermüe M, Tramper J, Wijffels RH (2002) Selective extraction of carotenoids from the microalga Dunaliella salina with retention of viability. Biotechnol Bioeng 79:30–36

  42. Hejazi MA, Anddrysiewicz E, Tramper J, Wijffels RH (2003) Effect of mixing rate on β-carotene production and extraction by Dunaliella salina in two-phase bioreactor. Biotechnol Bioeng 84:591–596

  43. Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196

  44. Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69:443–449

  45. Johnson EA, Schroeder WA (1995) Microbial carotenoids. Adv Biochem Eng Biotechnol 53:119–178

  46. Kang CD, Lee JS, Park TH, Sim SJ (2005) Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl Microbiol Biotechnol 68:237–241

  47. Kim HW, Chew BP, Wong TS, Park JS, Weng BBC, Byrne KM, Hayek MG, Reinhart GA (2000a) Modulation of humoral and cell-mediated immune responses by dietary lutein in cats. Vet Immunol Immunopathol 73:331–341

  48. Kim HW, Chew BP, Wong TS, Park JS, Weng BBC, Byrne KM, Hayek MG, Reinhart GA (2000b) Dietary lutein stimulates immune response in the canine. Vet Immunol Immunopathol 74:315–327

  49. Kobayashi M, Kakizono T, Nagai S (1991) Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media. J Ferment Bioeng 71:335–339

  50. Kobayashi M, Kakizono T, Nagai S (1992a) Effect of carbon/nitrogen (C/N) ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74:403–405

  51. Kobayashi M, Kakizono T, Nishio N, Nagai S (1992b) Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74:61–63

  52. Koh HH, Murray IJ, Nolan D, Carden D, Feather J, Beatty S (2004) Plasma and macular responses to lutein supplement in subjects with and without age-related maculopathy: a pilot study. Exp Eye Res 79:21–27

  53. Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26:459–516

  54. Krinsky NI, Landrum JT, Bone RA (2003) Biological mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23:171–201

  55. Lee YK, Ding SY (1995) Effect of dissolved oxygen partial pressure on the accumulation of astaxanthin in chemostat cultures of Haematococcus lacustris (Chlorophyta). J Phycol 31:922–924

  56. Lee YK, Soh CW (1991) Accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). J Phycol 27:575–577

  57. León-Bañares R, González-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52

  58. Mares-Perlman JA, Millen AE, Ficek TL, Hankinson SE (2002) The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J Nutr 132:5185–5245

  59. Margalith PZ (1999) Production of ketocarotenoids by microalgae. Appl Microbiol Biotechnol 51:431–438

  60. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136

  61. Mendes-Pinto MM, Raposo MFJ, Bowen J, Young AJ, Morais R (2001) Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications on bio-availability. J Appl Phycol 13:19–24

  62. Molina-Grima E, Acién Fernández FG, García Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer and scaleup. J Biotechnol 70:231–247

  63. Molina-Grima E, Acién Fernández FG, Robles Medina A (2004) Downstream processing of cell-mass and products. In: Richmond A (ed) Handbook of microalgal culture. Biotechnology and applied phycology. Blackwell Science, Oxford, UK, pp 215–251

  64. Negro JJ, Garrido-Fernández J (2000) Astaxanthin is the major carotenoid in tissues of white storks (Ciconia ciconia) feeding on introduced crayfish (Procambarus clarkii). Comp Biochem Physiol Part B Biochem Mol Biol 126:347–352

  65. Ninet L, Renault J (1979) In: Peppler HJ, Perlman D (eds) Microbiol technology, 2nd edn. Academic, New York, pp 529–530

  66. Olaizola M (2000) Commercial production of astaxanthin from Haematococus pluvialis using 25,000-liter outdoor photobioreactor. J Appl Phycol 12:499–506

  67. Olaizola M, Huntley ME (2003) Recent advances in commercial production of astaxanthin from microalgae. In: Fingerman M, Nagabhushanam R (eds) Biomaterials and bioprocessing. Enfield Science Publishers, pp 143–164

  68. Olmedilla B, Granado F, Blanco I, Vaquero M (2003) Lutein, but not α-tocopherol, supplementation improves visual function in patients with age-related cataracts: a 2-y double-blind, placebo-controlled pilot study. Nutrition 19:21–24

  69. Orosa M, Valero JF, Herrero C, Abalde J (2001) Comparison of the accumulation of astaxanthin in Haematococcus and other green microalgae under N-starvation and high light conditions. Biotechnol Lett 23:1079–1085

  70. Orosa M, Franqueira D, Cid A, Abalde J (2005) Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. Bioresour Technol 96:373–378

  71. Piccaglia R, Marotti M, Grandi S (1998) Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Ind Crops Prod 8:45–51

  72. Pulz O (2001) Photobioreactors: production systems of phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

  73. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

  74. Richmond A (2004) Handbook of microalgal culture. Biotechnology and applied phycology. Blackwell Science, Oxford, UK

  75. Salter GJ, Kell DB (1995) Solvent selection for whole cell biotransformation in organic media. Crit Rev Biotechnol 15:139–177

  76. Sandmann G (2001) Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. Trends Plant Sci 6:14–17

  77. Sansawa H, Endo H (2004) Production of intracellular phytochemicals in Chlorella under heterotrophic conditions. J Biosci Bioeng 98:437–444

  78. Shi X, Zhengyun W, Chen F (2006) Kinetic model of lutein production by heterotrophic Chlorella at various pH and temperature. Mol Nutr Food Res 50:763–768

  79. Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72:7477–7484

  80. Todd Lorenz R, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

  81. Tredici M (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Science, Oxford, UK, pp 178–214

  82. Walker TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24:629–641

  83. Wang SB, Hu Q, Sommerfeld M, Chen F (2004) Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae). Proteomics 4:692–708

  84. Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344

  85. Whitehead AJ, Mares JA, Danis RP (2006) Macular pigment: a review of current knowledge. Arch Ophtalmol 124:1038–1045

  86. Zaslavskaia LA, Lippmeier JC, Shih C, Erhardt D, Grossman AR, Apt K (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075

  87. Zhang DH, Lee YK (1997) Enhanced accumulation of secondary carotenoids in a mutant of the green alga, Chlorococcum sp. J Appl Phycol 9:459–463

  88. Zlotnik IS, Sukenik A, Dubinsky Z (1993) Physiological and photosynthetic changes during the formation of red aplanospores in the chlorophyte Haematococcus pluvialis. J Phycol 29:463–469

  89. Zorn H, Breithaupt DE, Takenberg M, Schwack W, Berger RG (2003) Enzymatic hydrolysis of carotenoid esters of marigold flowers (Tagetes erecta L.) and red paprika (Capsicum annuum L.) by commercial lipases and Pleorotus sapidus extracellular lipase. Enzyme Microb Technol 32:623–628

Download references

Acknowledgment

The authors thank Drs. Fernández Sevilla, Acién Fernández, and Molina Grima—from the Department of Chemical Engineering, University of Almería, Spain—for providing unpublished data on lutein content and productivity of Scenedesmus almeriensis, as well as the photobioreactor photograph. Work from the authors’ laboratory was supported by grants PPQ2001-3832-C02-01 and BIO2004-05834-C02-02, from Plan Nacional, Ministerio de Educación y Ciencia (cofinanced with FEDER funds from EU), IFAPA (CO3-125), and Plan Andaluz de Investigación (group no. CVI131), Spain.

Author information

Correspondence to Miguel G. Guerrero.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Del Campo, J.A., García-González, M. & Guerrero, M.G. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74, 1163–1174 (2007). https://doi.org/10.1007/s00253-007-0844-9

Download citation

Keywords

  • Carotenoid
  • Microalgae
  • Lutein
  • Astaxanthin
  • Dunaliella