Applied Microbiology and Biotechnology

, Volume 74, Issue 5, pp 961–973 | Cite as

Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems

  • Hermann J. Heipieper
  • Grit Neumann
  • Sjef Cornelissen
  • Friedhelm Meinhardt


Product removal from aqueous media poses a challenge in biotechnological whole-cell biotransformation processes in which substrates and/or products may have toxic effects. The assignment of an additional liquid solvent phase provides a solution, as it facilitates in situ product recovery from aqueous media. In such two-phase systems, toxic substrates and products are present in the aqueous phase in tolerable but still bioavailable amounts. As a matter of course, adequate organic solvents have to possess hydrophobicity properties akin to substrates and products of interest, which in turn involves intrinsic toxicity of the solvents used. The employment of bacteria being able to adapt to otherwise toxic solvents helps to overcome the problem. Adaptive mechanisms enabling such solvent tolerant bacteria to survive and grow in the presence of toxic solvents generally involve either modification of the membrane and cell surface properties, changes in the overall energy status, or the activation and/or induction of active transport systems for extruding solvents from membranes into the environment. It is anticipated that the biotechnological production of a number of important fine chemicals in amounts sufficient to compete economically with chemical syntheses will soon be possible by making use of solvent-tolerant microorganisms.


Quantitative Structure Activity Relationship Trans Isomerisation Membrane Fatty Acid Solvent Tolerance Phospholipid Headgroups 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by Contract No. QLRT-2001-00435 of the European Commission within its Fifth Framework Programme. We thank Daniel Meyer for a critical discussion of the manuscript.


  1. Ahmad S, Johri BN (1993) Microbial transformation of sterols in organic media. Indian J Chem Sect B 32:67–69Google Scholar
  2. Aono R, Doukyu N, Kobayashi H, Nakajima H, Horikoshi K (1994) Oxidative bioconversion of cholesterol by Pseudomonas sp. strain-ST-200 in a water-organic solvent 2-phase system. Appl Environ Microbiol 60:2518–2523Google Scholar
  3. Aono R, Tsukagoshi N, Miyamoto T (2001) Evaluation of the growth inhibition strength of hydrocarbon solvents against Escherichia coli and Pseudomonas putida grown in a two-liquid phase culture system consisting of a medium and organic solvent. Extremophiles 5:11–15CrossRefGoogle Scholar
  4. Brink LES, Tramper J (1985) Optimization of organic-solvent in multiphase biocatalysis. Biotechnol Bioeng 27:1258–1269CrossRefGoogle Scholar
  5. Bruce LJ, Daugulis AJ (1991) Solvent selection strategies for extractive biocatalysis. Biotechnol Prog 7:116–124CrossRefGoogle Scholar
  6. Chen Q, Nijenhuis A, Preusting H, Dolfing J, Janssen DB, Witholt B (1995) Effects of octane on the fatty acid composition and transition temperature of Pseudomonas oleovorans membrane lipids during growth in 2-liquid-phase continuous cultures. Enzyme Microb Technol 17:647–652CrossRefGoogle Scholar
  7. Cruden DL, Wolfram JH, Rogers RD, Gibson DT (1992) Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic–aqueous) medium. Appl Environ Microbiol 58:2723–2729Google Scholar
  8. Cruz A, Fernandes P, Cabral JMS, Pinheiro HM (2004) Solvent partitioning and whole-cell sitosterol bioconversion activity in aqueous–organic two-phase systems. Enzyme Microb Technol 34:342–353CrossRefGoogle Scholar
  9. Daugulis AJ (1997) Partitioning bioreactors. Curr Opin Biotechnol 8:169–174CrossRefGoogle Scholar
  10. de Bont JAM (1998) Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol 16:493–499CrossRefGoogle Scholar
  11. Diefenbach R, Heipieper HJ, Keweloh H (1992) The conversion of cis- into trans- unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity. Appl Environ Microbiol 38:382–387Google Scholar
  12. Doukyu N, Nakano T, Okuyama Y, Aono R (2002) Isolation of an Acinetobacter sp. ST-550 which produces a high level of indigo in a water–organic solvent two-phase system containing high levels of indole. Appl Microbiol Biotechnol 58:543–546CrossRefGoogle Scholar
  13. Favre-Bulle O, Weenink E, Vos T, Preusting H, Witholt B (1993) Continuous bioconversion of N-octane to octanoic-acid by recombinant Escherichia-coli (Alk+) growing in a 2-liquid-phase chemostat. Biotechnol Bioeng 41:263–272CrossRefGoogle Scholar
  14. Fredrickson JK, Balkwill DL, Drake GR, Romine MF, Ringelberg DB, White DC (1995) Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl Environ Microbiol 61:1917–1922Google Scholar
  15. Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852Google Scholar
  16. Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms behind resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415CrossRefGoogle Scholar
  17. Heipieper HJ, Meulenbeld G, van Oirschot Q, de Bont JAM (1996) Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in Pseudomonas putida S12. Appl Environ Microbiol 62:2773–2777Google Scholar
  18. Heipieper HJ, Meinhardt F, Segura A (2003) The cistrans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229:1–7CrossRefGoogle Scholar
  19. Holtwick R, Meinhardt F, Keweloh H (1997) Cistrans isomerization of unsaturated fatty acids: cloning and sequencing of the cti gene from Pseudomonas putida P8. Appl Environ Microbiol 63:4292–4297Google Scholar
  20. Holtwick R, Keweloh H, Meinhardt F (1999) Cis/trans isomerase of unsaturated fatty acids of Pseudomonas putida P8: evidence for a heme protein of the cytochrome c type. Appl Environ Microbiol 65:2644–2649Google Scholar
  21. Husken LE, Oomes M, Schroen K, Tramper J, de Bont JAM, Beeftink R (2002) Membrane-facilitated bioproduction of 3-methylcatechol in an octanol/water two-phase system. J Biotechnol 96:281–289CrossRefGoogle Scholar
  22. Husken LE, Hoogakker J, de Bont JAM, Tramper J, Beeftink HH (2003) Model description of bacterial 3-methylcatechol production in one- and two-phase systems. Bioprocess Biosyst Eng 26:11–17CrossRefGoogle Scholar
  23. Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678Google Scholar
  24. Ingram LO (1977) Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl Environ Microbiol 33:1233–1236Google Scholar
  25. Ingram LO, Buttke TM (1984) Effects of alcohols on micro-organisms. Adv Microb Physiol 25:253–300Google Scholar
  26. Inoue A, Horikoshi K (1989) A Pseudomonas thrives in high concentrations of toluene. Nature 338:264–266CrossRefGoogle Scholar
  27. Isken S, de Bont JAM (1996) Active efflux of toluene in a solvent-resistant bacterium. J Bacteriol 178:6056–6058Google Scholar
  28. Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238CrossRefGoogle Scholar
  29. Isken S, Heipieper HJ (2002) Toxicity of organic solvents to microoganisms. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 3147–3155Google Scholar
  30. Kabelitz N, Santos PM, Heipieper HJ (2003) Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol Lett 220:223–227CrossRefGoogle Scholar
  31. Kato C, Inoue A, Horikoshi K (1996) Isolating and characterizing deep-sea marine microorganisms. Trends Biotechnol 14:6–12CrossRefGoogle Scholar
  32. Kellerhals MB, Hazenberg W, Witholt B (1999) High cell density fermentations of Pseudomonas oleovorans for the production of mcl-PHAs in two-liquid phase media. Enzyme Microb Technol 24:111–116CrossRefGoogle Scholar
  33. Keweloh H, Weyrauch G, Rehm HJ (1990) Phenol-induced membrane changes in free and immobilized Escherichia coli. Appl Microbiol Biotechnol 33:66–71CrossRefGoogle Scholar
  34. Kim K, Lee SJ, Lee KH, Lim DB (1998) Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM73. J Bacteriol 180:3692–3696Google Scholar
  35. Kiran MD, Annapoorni S, Suzuki I, Murata N, Shivaji S (2005) Cistrans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 9:117–125CrossRefGoogle Scholar
  36. Kobayashi H, Uematsu K, Hirayama H, Horikoshi K (2000) Novel toluene elimination system in a toluene-tolerant microorganism. J Bacteriol 182:6451–6455CrossRefGoogle Scholar
  37. Laane C, Boeren S, Vos K (1985) On optimizing organic solvents in multi-liquid-phase biocatalysis. Trends Biotechnol 3:251–252CrossRefGoogle Scholar
  38. Leo AJ (1993) Calculating log P (oct) from structures. Chem Rev 93:1281–1306CrossRefGoogle Scholar
  39. Leon R, Fernandes P, Pinheiro HM, Cabral JMS (1998) Whole-cell biocatalysis in organic media. Enzyme Microb Technol 23:483–500CrossRefGoogle Scholar
  40. Liu WH, Horng WC, Tsai MS (1996) Bioconversion of cholesterol to cholest-4-en-3-one in aqueous organic solvent two-phase reactors. Enzyme Microb Technol 18:184–189CrossRefGoogle Scholar
  41. Makin SA, Beveridge TJ (1996) The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142:299–307Google Scholar
  42. Malinowski JJ (2001) Two-phase partitioning bioreactors in fermentation technology. Biotechnol Adv 19:525–538CrossRefGoogle Scholar
  43. Matsumoto M, De Bont JAM, Isken S (2002) Isolation and characterization of the solvent-tolerant Bacillus cereus strain R1. J Biosci Bioeng 94:45–51CrossRefGoogle Scholar
  44. Meyer D, Witholt B, Schmid A (2005) Suitability of recombinant Escherichia coli and Pseudomonas putida strains for selective biotransformation of m-nitrotoluene by xylene monooxygenase. Appl Environ Microbiol 71:6624–6632CrossRefGoogle Scholar
  45. Meyer D, Buehler B, Schmid A (2006) Process and catalyst design objectives for specific redox biocatalysis. Adv Appl Microbiol 59:53–91Google Scholar
  46. Na KS, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J (2005) Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng 99:378–382CrossRefGoogle Scholar
  47. Neumann G, Kabelitz N, Zehnsdorf A, Miltner A, Lippold H, Meyer D, Schmid A, Heipieper HJ (2005a) Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations. Appl Environ Microbiol 71:6606–6612CrossRefGoogle Scholar
  48. Neumann G, Veeranagouda Y, Karegoudar TB, Sahin O, Mausezahl I, Kabelitz N, Kappelmeyer U, Heipieper HJ (2005b) Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 9:163–168CrossRefGoogle Scholar
  49. Neumann G, Cornelissen S, van Breukelen F, Hunger S, Lippold H, Loffhagen N, Wick LY, Heipieper HJ (2006) Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase. Appl Environ Microbiol 72:4232–4238CrossRefGoogle Scholar
  50. Nikolova P, Ward OP (1993) Whole-cell biocatalysis in nonconventional media. J Ind Microbiol 12:76–86CrossRefGoogle Scholar
  51. Ogino H, Yasui K, Shiotani T, Ishihara T, Ishikawa H (1995) Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl Environ Microbiol 61:4258–4262Google Scholar
  52. Osborne SJ, Leaver J, Turner MK, Dunnill P (1990) Correlation of biocatalytic activity in an organic–aqueous two-liquid phase system with solvent concentration in the cell membrane. Enzyme Microb Technol 12:281–291CrossRefGoogle Scholar
  53. Paje MLF, Neilan BA, Couperwhite I (1997) A Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiology 143:2975–2981CrossRefGoogle Scholar
  54. Panke S, Meyer A, Huber CM, Witholt B, Wubbolts MG (1999) An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol 65:2324–2332Google Scholar
  55. Panke S, Held M, Wubbolts MG, Witholt B, Schmid A (2002) Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol Bioeng 80:33–41CrossRefGoogle Scholar
  56. Pinkart HC, White DC (1997) Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. J Bacteriol 179:4219–4226Google Scholar
  57. Pinkart HC, Wolfram JW, Rogers R, White DC (1996) Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene. Appl Environ Microbiol 62:1129–1132Google Scholar
  58. Ramos JL, Duque E, Huertas MJ, Haidour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916Google Scholar
  59. Ramos JL, Gallegos MT, Marques S, Ramos-Gonzalez MI, Espinosa-Urgel M, Segura A (2001) Responses of Gram-negative bacteria to certain environmental stressors. Curr Opin Microbiol 4:166–171CrossRefGoogle Scholar
  60. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in Gram-negative bacteria. Annu Rev Microbiol 56:743–768CrossRefGoogle Scholar
  61. Rekker RF, Kort HMD (1979) Hydrophobic fragmental constant—extension to a 1000 data point set. Eur J Med Chem 14:479–488Google Scholar
  62. Reva ON, Weinel C, Weinel M, Bohm K, Stjepandic D, Hoheisel JD, Tummler B (2006) Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 188:4079–4092CrossRefGoogle Scholar
  63. Rojas A, Duque E, Schmid A, Hurtado A, Ramos JL, Segura A (2004) Biotransformation in double-phase systems: physiological responses of Pseudomonas putida DOT-T1E to a double phase made of aliphatic alcohols and biosynthesis of substituted catechols. Appl Environ Microbiol 70:3637–3643CrossRefGoogle Scholar
  64. Salter GJ, Kell DB (1995) Solvent selection for whole cell biotransformations in organic media. Crit Rev Biotechnol 15:139–177CrossRefGoogle Scholar
  65. Santos PM, Benndorf D, Sa-Correia I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:2640–2652CrossRefGoogle Scholar
  66. Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268CrossRefGoogle Scholar
  67. Sardessai YN, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog 20:655–660CrossRefGoogle Scholar
  68. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268CrossRefGoogle Scholar
  69. Schmid A, Hollmann F, Park JB, Buhler B (2002) The use of enzymes in the chemical industry in Europe. Curr Opin Biotechnol 13:359–366CrossRefGoogle Scholar
  70. Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths—biocatalysis in industrial synthesis. Science 299:1694–1697CrossRefGoogle Scholar
  71. Segura A, Duque E, Mosqueda G, Ramos JL, Junker F (1999) Multiple responses of Gram-negative bacteria to organic solvents. Environ Microbiol 1:191–198CrossRefGoogle Scholar
  72. Segura A, Godoy P, van Dillewijn P, Hurtado A, Arroyo N, Santacruz S, Ramos JL (2005) Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 187:5937–5945CrossRefGoogle Scholar
  73. Shima H, Kudo T, Horikoshi K (1991) Isolation of toluene-resistant mutants from Pseudomonas putida Ppg1 (ATCC 17453). Agric Biol Chem 55:1197–1199Google Scholar
  74. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222Google Scholar
  75. Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525CrossRefGoogle Scholar
  76. van Sonsbeek HM, Beeftink HH, Tramper J (1993) Two-liquid-phase bioreactors. Enzyme Microb Technol 15:722–729CrossRefGoogle Scholar
  77. Veeranagouda Y, Karegoudar TB, Neumann G, Heipieper HJ (2006) Enterobacter sp. VKGH12 growing with n-butanol as the sole carbon source and cells to which the alcohol is added as pure toxin show considerable differences in their adaptive responses. FEMS Microbiol Lett 254:48–54CrossRefGoogle Scholar
  78. Volkers RJM, de Jong AL, Hulst AG, van Baar BLM, de Bont JAM, Wery J (2006) Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12. Environ Microbiol 8:1674–1679CrossRefGoogle Scholar
  79. von Wallbrunn A, Heipieper HJ, Meinhardt F (2002) Cis/trans isomerisation of unsaturated fatty acids in a cardiolipin synthase knock-out mutant of Pseudomonas putida P8. Appl Microbiol Biotechnol 60:179–185CrossRefGoogle Scholar
  80. von Wallbrunn A, Richnow HH, Neumann G, Meinhardt F, Heipieper HJ (2003) Mechanism of cistrans isomerization of unsaturated fatty acids in Pseudomonas putida. J Bacteriol 185:1730–1733CrossRefGoogle Scholar
  81. Vrionis HA, Kropinski AM, Daugulis AJ (2002) Enhancement of a two-phase partitioning bioreactor system by modification of the microbial catalyst: demonstration of concept. Biotechnol Bioeng 79:587–594CrossRefGoogle Scholar
  82. Weber FJ, de Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245Google Scholar
  83. Wery J, de Bont JAM (2004) Solvent-tolerance of pseudomonads: a new degree of freedom in biocatalysis. In: Ramos JL (ed) Pseudomonas, vol 3: biosynthesis of macromolecules and molecular metabolism. Kluwer, Dordrecht, pp 609–634Google Scholar
  84. Wery J, da Silva DIM, de Bont JAM (2000) A genetically modified solvent-tolerant bacterium for optimized production of a toxic fine chemical. Appl Microbiol Biotechnol 54:180–185CrossRefGoogle Scholar
  85. Wick LY, de Munain AR, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385CrossRefGoogle Scholar
  86. Wierckx NJP, Ballerstedt H, de Bont JAM, Wery J (2005) Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microbiol 71:8221–8227CrossRefGoogle Scholar
  87. Witholt B, Desmet MJ, Kingma J, Vanbeilen JB, Kok M, Lageveen RG, Eggink G (1990) Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors—background and economic potential. Trends Biotechnol 8:46–52CrossRefGoogle Scholar
  88. Wubbolts MG, FavreBulle O, Witholt B (1996) Biosynthesis of synthons in two-liquid-phase media. Biotechnol Bioeng 52:301–308CrossRefGoogle Scholar
  89. Zahir Z, Seed KD, Dennis JJ (2006) Isolation and characterization of novel organic solvent-tolerant bacteria. Extremophiles 10:129–138CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Hermann J. Heipieper
    • 1
  • Grit Neumann
    • 1
  • Sjef Cornelissen
    • 2
  • Friedhelm Meinhardt
    • 3
  1. 1.Department of BioremediationUFZ Helmholtz Centre for Environmental ResearchLeipzigGermany
  2. 2.Department of Biochemical and Chemical EngineeringUniversity of DortmundDortmundGermany
  3. 3.Institut für Molekulare Mikrobiologie und BiotechnologieWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations