Advertisement

Applied Microbiology and Biotechnology

, Volume 75, Issue 2, pp 451–465 | Cite as

Effect of dilution rate on the microbial structure of a mesophilic butyrate-degrading methanogenic community during continuous cultivation

  • Yue-Qin TangEmail author
  • Toru Shigematsu
  • Shigeru Morimura
  • Kenji Kida
Environmental Biotechnology

Abstract

We constructed two mesophilic anaerobic chemostats that were continuously fed with synthetic wastewater containing butyrate as the sole source of carbon and energy. Steady-state conditions were achieved at dilution rates between 0.025 and 0.7 day−1. Butyrate, fed into the chemostat, was almost completely mineralized to CH4 and CO2 at dilution rates below 0.5 day−1. The butyrate-degrading methanogenic communities in the chemostats at dilution rates between 0.025 and 0.7 day−1 were monitored based on the 16S rRNA gene, using molecular biological techniques including clone library analysis, denaturing gradient gel electrophoresis, and quantitative real-time polymerase chain reaction. The aceticlastic methanogen Methanosaeta and the hydrogenotrophic methanogen Methanoculleus dominated in methanogens at low dilution rates, whereas the aceticlastic methanogen Methanosaeta, Methanosarcina, the hydrogenotrophic methanogen Methanoculleus, and Methanospirillum dominated at high dilution rates. Bacteria affiliated with the family Syntrophaceae in the phylum Proteobacteria predominated at the low dilution rate of 0.025 day−1, whereas bacteria affiliated with the phylum Firmicutes and Candidate division OP3 predominated at high dilution rates. A significant quantity of bacteria closely related to the genus Syntrophomonas was detected at high dilution rates. Dilution rate showed an apparent effect on archaeal and bacterial communities in the butyrate-fed chemostats.

Keywords

Microbial community Butyrate Dilution rate 

Notes

Acknowledgment

Part of this work was financially supported by a Grant-in-Aid for Scientific Research (Project number 16510061) from the Japan Society for the Promotion of Science (JSPS).

References

  1. Ahring BK, Ibrahim AA, Mladenovska Z (2001) Effect of temperature increase from 55 to 65 degrees C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Res 35:2446–2452PubMedCrossRefGoogle Scholar
  2. Alfreider A, Vogt C, Babel W (2002) Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis. Syst Appl Microbiol 25:232–240PubMedCrossRefGoogle Scholar
  3. Altschul SF, Madden TL, Schäffer AA, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  4. Alves MM, Vieira JA, Pereira RM, Pereira MA, Mota M (2001) Effect of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part I: biofilm growth and activity. Water Res 35:255–263PubMedCrossRefGoogle Scholar
  5. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  6. Beaty PS, McInerney MJ (1987) Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch Microbiol 147:389–393CrossRefGoogle Scholar
  7. Beaty PS, McInerney MJ (1989) Effect of organic acid anions on the growth and metabolism of Syntrophomonas wolfei in pure culture and in defined consortia. Appl Environ Microbiol 55:977–983PubMedGoogle Scholar
  8. Boone DR, Whitman WB, Koga Y (2001) Order III. Methanosarcinales ord. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 1 (The Archaea and the deeply branching and phototrophic Bacteria). Springer, Berlin Heidelberg New York, pp 268–294Google Scholar
  9. Chong SC, Liu Y, Cummins M, Valentine DL, Boone DR (2002) Methanogenium marinum sp. nov., a H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization. Antonie van Leeuwenhoek 81:263–270PubMedCrossRefGoogle Scholar
  10. Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A (2005) Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7:1104–1115PubMedCrossRefGoogle Scholar
  11. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33 (Database Issue):D294–D296PubMedCrossRefGoogle Scholar
  12. de Bok FAM, Stams AJM, Dijkema C, Boone DR (2001) Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 67:1800–1804PubMedCrossRefGoogle Scholar
  13. Felsenstein J (1985) Confidence limits of phylogenesis: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  14. Fernández A, Huang S, Seston S, Xing J, Hickey R, Criddle C, Tiedje J (1999) How stable is stable? Function versus community composition. Appl Environ Microbiol 65:3697–3704PubMedGoogle Scholar
  15. Ferris MJ, Ward DM (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381PubMedGoogle Scholar
  16. Ficker M, Krastel K, Orlicky S, Edwards E (1999) Molecular characterization of a toluene-degrading methanogenic consortium. Appl Environ Microbiol 65:5576–5585PubMedGoogle Scholar
  17. Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, Conway de Macario E, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47:1068–1072PubMedGoogle Scholar
  18. Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54:427–443PubMedCrossRefGoogle Scholar
  19. Hansen KH, Ahring BK, Raskin L (1999) Quantification of syntrophic fatty acid-β-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization. Appl Environ Microbiol 65:4767–4774PubMedGoogle Scholar
  20. Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2006) Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digestor. Appl Environ Microbiol 72:1623–1630PubMedCrossRefGoogle Scholar
  21. Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ (1999) Syntrophus aciditophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171:107–114PubMedCrossRefGoogle Scholar
  22. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  23. Lawrence AW, McCarty PL (1969). Kinetics of methane fermentation in anaerobic treatment. J Water Pollut Control Fed 41:R1–R17Google Scholar
  24. Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 49:545–556PubMedGoogle Scholar
  25. Lorowitz WH, Zhao H, Bryant MP (1989) Syntrophomonas wolfei subsp. saponavida subsp. nov., a long-chain fatty acid-degrading, anaerobic, syntrophic bacterium; Syntrophomonas wolfei subsp. wolfei subsp. nov.; and emended descriptions of the genus and species. Int J Syst Bacteriol 39:122–136Google Scholar
  26. Massol-Deyá A, Weller R, Ríos-Hernández L, Zhou J-Z, Hickey RF, Tiedje JM (1997) Succession and convergence of biofilm communities in fixed-film reactors treating aromatic hydrocarbons in groundwater. Appl Environ Microbiol 63:270–276PubMedGoogle Scholar
  27. Mchugh S, Carton M, Mahony T, O’Flaherty V (2003) Methanogenic population structure in a variety of anaerobic bioreactors. FEMS Microbiol Lett 219:297–304PubMedCrossRefGoogle Scholar
  28. McInerney MJ (1988) Anaerobic hydrolysis and fermentation of fats and proteins. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 373–416Google Scholar
  29. McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039PubMedGoogle Scholar
  30. McMahon KD, Zheng D, Stams AJM, Mackie RI, Raskin L (2004) Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnol Bioeng 87:823–834PubMedCrossRefGoogle Scholar
  31. Mikucki JA, Liu Y, Delwiche M, Colwell MS, Boone DR (2003) Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarines sp. nov. Appl Environ Microbiol 69:3311–3316PubMedCrossRefGoogle Scholar
  32. Roy F, Samain E, Dubourguier HC, Albagnac G (1986) Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 145:142–147CrossRefGoogle Scholar
  33. Saitou N, Nei M (1987) The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  34. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280PubMedGoogle Scholar
  35. Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (2000) Syntrophothermus lipocalidus gen.nov. sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779PubMedGoogle Scholar
  36. Sekiguchi Y, Kamagata Y, Harada H (2001) Recent advances in methane fermentation technology. Curr Opin Biotechnol 12:277–282PubMedCrossRefGoogle Scholar
  37. Shigematsu T, Tang YQ, Kawaguchi H, Ninomiya K, Kijima J, Kobayashi T, Morimura S, Kida K (2003) Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. J Biosci Bioeng 96:547–558PubMedCrossRefGoogle Scholar
  38. Shigematsu T, Tang YQ, Kobayashi T, Kawaguchi H, Morimura S, Kida K (2004) Effect of dilution rate on metabolic pathway shift between aceticlastic and non-aceticlastic methanogenesis in chemostat cultivation. Appl Environ Microbiol 70:4048–4052PubMedCrossRefGoogle Scholar
  39. Shigematsu T, Tang YQ, Mizuno Y, Kawaguchi H, Morimura S, Kida K (2006a) Microbial diversity of a mesophilic methanogenic consortium that can degrade long-chain fatty acids in chemostat cultivation. J Biosci Bioeng 102:535–544PubMedCrossRefGoogle Scholar
  40. Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K (2006b) Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl Microbiol Biotechnol 72:401–415PubMedCrossRefGoogle Scholar
  41. Stieb M, Schink B (1985) Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Arch Microbiol 140:387–390CrossRefGoogle Scholar
  42. Sundh I, Carlsson H, Nordberg A, Hannsson M, Mathisen B (2003) Effects of glucose overloading on microbial community structure and biogas production in a laboratory-scale anaerobic digester. Bioresour Technol 89:237–243PubMedCrossRefGoogle Scholar
  43. Svetlitshnyi V, Rainey F, Wiegel J (1996) Thermosyntropha lipolytica gen. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46:1131–1137PubMedGoogle Scholar
  44. Tang YQ, Ikbal, Shigematsu T, Morimura S, Kida K (2004). The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res 38:2537–2550PubMedCrossRefGoogle Scholar
  45. Tang YQ, Shigematsu T, Morimura S, Kida K (2005) Microbial community analysis of mesophilic anaerobic protein degradation process using bovine serum albumin (BSA)-fed continuous cultivation. J Biosci Bioeng 99:150–164PubMedCrossRefGoogle Scholar
  46. Tholozan JL, Samain E, Grivet JP, Moletta R, Dubourguier HC, Albagnac G (1988) Reductive carboxylation of propionate to butyrate in methanogenic ecosystems. Appl Environ Microbiol 54:441–445PubMedGoogle Scholar
  47. Tholozan JL, Samain E, Grivet JP, Albagnac G (1990) Propionate metabolism in a methanogenic enrichment culture. Direct reductive carboxylation and acetogenesis pathways. FEMS Microbiol Ecol 73:291–298CrossRefGoogle Scholar
  48. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  49. von Wintzingerode F, Selent B, Hegemann W, Gobel UB (1999) Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium. Appl Environ Microbiol 65:283–286Google Scholar
  50. Watanabe K, Watanabe K, Kodama Y, Syutsubo K, Harayama S (2000) Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Appl Environ Microbiol 66:4803–4809PubMedCrossRefGoogle Scholar
  51. Wu C, Liu X, Dong X (2006) Sytrophomonas cellicola sp. nov., a spore-forming syntrophic bacterium isolated from a distilled-spirit-fermenting cellar, and assignment of Syntrophospora bryantii to Syntrophomonas bryantii comb. nov. Int J Syst Evol Microbiol 56:2332–2335Google Scholar
  52. Zeikus JG (1977) The biology of methanogenic bacteria. Bacteriol Rev 41:514–541PubMedGoogle Scholar
  53. Zellner G, Messner P, Winter J, Stackebrandt E (1998) Methanoculleus palmolei sp. nov., and irregularity coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in North-Sumatra, Indonesia. Int J Syst Bacteriol 48:1111–1117PubMedGoogle Scholar
  54. Zhang C, Liu X, Dong X (2004) Syntrophothermus curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int J Syst Evol Microbiol 54:969–973PubMedCrossRefGoogle Scholar
  55. Zhang C, Liu X, Dong X (2005) Syntrophomonas erecta sp. nov., a novel anaerobe syntrophically degrading short chain fatty acids. Int J Syst Evol Microbiol 55:799–803PubMedCrossRefGoogle Scholar
  56. Zhao H, Yeng D, Woese CR, Bryant MP (1990) Assignment of Claostridium bryantii to Syntrophospora bryantii gen. nov. comb., based on 16S rRNA sequence analysis of its crotonate-grown pure culture. Int J Syst Bacteriol 40:40–44PubMedCrossRefGoogle Scholar
  57. Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, NY, pp 128–206Google Scholar
  58. Zoetendal EG, Akkermans ADL, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859PubMedGoogle Scholar
  59. Zumstein E, Moletta R, Godon J-J (2000) Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environ Microbiol 2:69–78PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Yue-Qin Tang
    • 1
    Email author
  • Toru Shigematsu
    • 2
  • Shigeru Morimura
    • 1
  • Kenji Kida
    • 1
  1. 1.Graduate School of Science and TechnologyKumamoto UniversityKumamoto CityJapan
  2. 2.Faculty of Applied Life SciencesNiigata University of Pharmacy and Applied Life SciencesNiigata CityJapan

Personalised recommendations