Applied Microbiology and Biotechnology

, Volume 75, Issue 1, pp 125–132 | Cite as

Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition

  • P. Chaignon
  • I. Sadovskaya
  • Ch. Ragunah
  • N. Ramasubbu
  • J. B. Kaplan
  • S. JabbouriEmail author
Applied Microbial and Cell Physiology


Bacterial infections are serious complications after orthopaedic implant surgery. Staphylococci, with Staphylococcus epidermidis as a leading species, are the prevalent and most important species involved in orthopaedic implant-related infections. The biofilm mode of growth of these bacteria on an implant surface protects the organisms from the host’s immune system and from antibiotic therapy. Therapeutic agents that disintegrate the biofilm matrix would release planktonic cells into the environment and therefore allow antibiotics to eliminate the bacteria. An addition of a biofilm-degrading agent to a solution used for washing–draining procedures of infected orthopaedic implants would greatly improve the efficiency of the procedure and thus help to avoid the removal of the implant. We have previously shown that the extracellular staphylococcal matrix consists of a poly-N-acetylglucosamine (PNAG), extracellular teichoic acids (TAs) and protein components. In this study, we accessed the sensitivity of pre-formed biofilms of five clinical staphylococcal strains associated with orthopaedic prosthesis infections and with known compositions of the biofilm matrix to periodate, Pectinex Ultra SP, proteinase K, trypsin, pancreatin and dispersin B, an enzyme with a PNAG-hydrolysing activity. We also tested the effect of these agents on the purified carbohydrate components of staphylococcal biofilms, PNAG and TA. We found that the enzymatic detachment of staphylococcal biofilms depends on the nature of their constituents and varies between the clinical isolates. We suggest that a treatment with dispersin B followed by a protease (proteinase K or trypsin) could be capable to eradicate biofilms of a variety of staphylococcal strains on inert surfaces.


Staphylococcus Biofilm detachment Enzymatic treatment 



This work was supported by ANVAR and the CPER of the Nord-Pas de Calais. We thank Prof. G. Pier, Channing Laboratory, Brigham and Women’s Hospital, Boston, MA, for providing the bacterial strain S. aureus MN8m. We thank Prof. P. Hardouin for his support, and Aurélie Fontaine and Audrey Keunebrock for their technical assistance.


  1. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  2. Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27:2331–2339CrossRefGoogle Scholar
  3. Cerca N, Martins S, Cerca F, Jefferson KK, Pier GB, Oliveira R, Azeredo J (2005) Comparative assessment of antibiotic susceptibility of coagulase-negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or rapid XTT colorimetry. J Antimicrob Chemother 56:331–336CrossRefGoogle Scholar
  4. Chokr A, Watier D, Eleaume H, Pangon B, Ghnassia JC, Mack D, Jabbouri S (2006) Correlation between biofilm formation and production of polysaccharide intercellular adhesin in clinical isolates of coagulase-negative staphylococci. Int J Med Microbiol 296:381–388CrossRefGoogle Scholar
  5. Dubois M, Gilles KA, Hamilton JF, Rebers PA, Smyth F (1956) Colorimetric methods for determination of sugars and related substances. Anal Biochem 28:350–356Google Scholar
  6. Eleaume H, Jabbouri S (2004) Comparison of two standardisation methods in real-time quantitative RT-PCR to follow Staphylococcus aureus genes expression during in vitro growth. J Microbiol Methods 59:363–370CrossRefGoogle Scholar
  7. Enghofer E, Kress H (1979) An evaluation of the Morgan–Elson assay for 2-amino-2-deoxy sugars. Carbohydr Res 76:233–238CrossRefGoogle Scholar
  8. Frebourg NB, Lefebvre S, Baert S, Lemeland JF (2000) PCR-based assay for discrimination between invasive and contaminating Staphylococcus epidermidis strains. J Clin Microbiol 38:877–880Google Scholar
  9. Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40CrossRefGoogle Scholar
  10. Galdbart JO, Allignet J, Tung HS, Ryden C, El Solh N (2000) Screening for Staphylococcus epidermidis markers discriminating between skin–flora strains and those responsible for infections of joint prostheses. J Infect Dis 182:351–355CrossRefGoogle Scholar
  11. Götz F (2002) Staphylococcus and biofilms. Mol Microbiol 43:1367–1378CrossRefGoogle Scholar
  12. Hamilton MA (2002) Testing antimicrobials against biofilm bacteria. J AOAC Int 85:479–485Google Scholar
  13. Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Götz F (1996) Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20:1083–1091CrossRefGoogle Scholar
  14. Itoh Y, Wang X, Hinnebusch BJ, Preston JF 3rd, Romeo T (2005) Depolymerization of β-1,6-N-acetyl-d-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187:382–387CrossRefGoogle Scholar
  15. Johansen C (1996) A method for enzymatic treatment of biofilm. PCT. N. N. A/S. DenmarkGoogle Scholar
  16. Johansen C, Falholt P, Gram L (1997) Enzymatic removal and disinfection of bacterial biofilms. Appl Environ Microbiol 63:3724–3728Google Scholar
  17. Kaplan JB, Ragunath C, Ramasubbu N, Fine DH (2003) Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. J Bacteriol 185:4693–4698CrossRefGoogle Scholar
  18. Kaplan JB, Ragunath C, Velliyagounder K, Fine DH, Ramasubbu N (2004a) Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 48:2633–2636CrossRefGoogle Scholar
  19. Kaplan JB, Velliyagounder K, Ragunath C, Rohde H, Mack D, Knobloch JK, Ramasubbu N (2004b) Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol 186:8213–8220CrossRefGoogle Scholar
  20. Kogan G, Sadovskaya I, Chaignon P, Chokr A, Jabbouri S (2006) Biofilms of clinical strains of Staphylococcus that do not contain polysaccharide intercellular adhesin. FEMS Microbiol Lett 255:11–16CrossRefGoogle Scholar
  21. Lee YC (1978) Synthesis of some cluster glycosides suitable for attachment to proteins or solid matrices. Carbohydr Res 67:509–514CrossRefGoogle Scholar
  22. Lortat-Jacob A, Desplaces N, Gaudias J, Dacquet V, Dupon M, Carsenti H, Dellamonica P (2002) Secondary infection of joint implants: diagnostic criteria, treatment and prevention. Rev Chir Orthop Repar Appar Mot 88:51–61Google Scholar
  23. Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183Google Scholar
  24. Mack D, Riedewald J, Rohde H, Magnus T, Feucht HH, Elsner HA, Laufs R, Rupp ME (1999) Essential functional role of the polysaccharide intercellular adhesin of Staphylococcus epidermidis in hemagglutination. Infect Immun 67:1004–1008Google Scholar
  25. Maira-Litran T, Kropec A, Goldmann D, Pier GB (2004) Biologic properties and vaccine potential of the staphylococcal poly-N-acetyl glucosamine surface polysaccharide. Vaccine 22:872–879CrossRefGoogle Scholar
  26. Marion K, Pasmore M, Freney J, Delawari E, Renaud F, Costerton JW, Traeger J (2005) A new procedure allowing the complete removal and prevention of hemodialysis biofilms. Blood Purif 23:339–348CrossRefGoogle Scholar
  27. McKenney D, Pouliot K, Wang Y, Murthy V, Ulrich M, Döring G, Lee JC, Goldmann DA, Pier GB (2000) Vaccine potential of poly-1-6 β-d-N-succinylglucosamine, an immunoprotective surface polysaccharide of Staphylococcus aureus and Staphylococcus epidermidis. J Biotechnol 83:37–44CrossRefGoogle Scholar
  28. Projan SJ, Novick RP (1997) The molecular basis of pathogenicity. In: Crossley GL (ed) The staphylococci in human disease. Churchill Livingstone, New York, NY, pp 55–82Google Scholar
  29. Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F, Horstkotte MA, Knobloch JK-M, Heilmann C, Herrmann M, Mack D (2005) Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55:1883–1895CrossRefGoogle Scholar
  30. Sadovskaya I, Vinogradov E, Li J, Jabbouri S (2004) Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus epidermidis RP62A, a reference biofilm-positive strain. Carbohydr Res 339:1467–1473CrossRefGoogle Scholar
  31. Sadovskaya I, Vinogradov E, Flahaut S, Kogan G, Jabbouri S (2005) Extracellular carbohydrate-containing polymers of a model biofilm-producing strain Staphylococcus epidermidis RP62A. Infect Immun 73:3007–3017CrossRefGoogle Scholar
  32. Sadovskaya I, Chaignon P, Kogan G, Chokr A, Vinogradov E, Jabbouri S (2006) Carbohydrate-containing components of biofilms produced in vitro by some staphylococcal strains related to orthopaedic prosthesis infections. FEMS Immunol Med Microbiol 47:75–82CrossRefGoogle Scholar
  33. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9Google Scholar
  34. Trampuz A, Zimmerli W (2005) New strategies for the treatment of infections associated with prosthetic joints. Curr Opin Investig Drugs 6:185–190Google Scholar
  35. Vinogradov E, Sadovskaya I, Li J, Jabbouri S (2006) Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus aureus MN8m, a biofilm forming strain. Carbohydr Res 341:738–743CrossRefGoogle Scholar
  36. Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M (2004) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275CrossRefGoogle Scholar
  37. Wang X, Preston JF 3rd, Romeo T (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186:2724–2734CrossRefGoogle Scholar
  38. Ziebuhr W, Heilmann C, Gotz F, Meyer P, Wilms K, Straube E, Hacker J (1997) Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect Immun 65:890–896Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • P. Chaignon
    • 1
    • 2
  • I. Sadovskaya
    • 1
  • Ch. Ragunah
    • 3
  • N. Ramasubbu
    • 3
  • J. B. Kaplan
    • 3
  • S. Jabbouri
    • 1
    Email author
  1. 1.Laboratoire de Recherche sur les Biomatériaux et les BiotechnologiesUniversité du Littoral-Côte d’OpaleBoulogne-sur-Mer CedexFrance
  2. 2.Institut de ChimieUniversité Louis Pasteur/CNRSStrasbourgFrance
  3. 3.Department of Oral BiologyNew Jersey Dental SchoolNewarkUSA

Personalised recommendations